Большая Советская Энциклопедия (КО)
Шрифт:
Кольцехвостые кускусы
Кольцехво'стые куску'сы (Pseudocheirus), род млекопитающих семейства лазающих сумчатых. Длина тела 18—45 см, хвоста 17—40 см, весят до 1,5 кг. Хвост цепкий. Около 12 видов. Распространены в Австралии, Тасмании, Новой Гвинее. Обитают в лесах, кустарниковых зарослях, скалистых местах. Живут на деревьях. Питаются листьями, цветами, фруктами. Объект охоты (используется мех).
Кольцо алгебраическое
Кольцо' алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных, отрицательных чисел и нуля; 2) множество всех чётных чисел и вообще целых чисел, кратных данному числу n , 3) множество всех рациональных чисел. Общим в этих трёх примерах является то, что сложение и умножение чисел, входящих в систему, не выводят за пределы системы (следует отметить, что и вычитание не выводит за пределы системы). В различных областях математики часто приходится иметь дело с разнообразными множествами (они могут состоять, например, из многочленов или матриц ,
Кольцом называют непустое множество R, для элементов которого определены две операции — сложение и умножение, сопоставляющие любым двум элементам а, b из R, взятым в определённом порядке, один элемент а + b из R — их сумму и один элемент ab из R — их произведение, причём предполагаются выполненными следующие условия (аксиомы К.):
I. Коммутативность сложения:
а+b=b+ а.
II. Ассоциативность сложения:
а + (b + с ) = (а + b ) + с.
III. Обратимость сложения (возможность вычитания): уравнение а + х = b допускает решение х = b—a.
IV. Дистрибутивность: а (b + с ) = ab+ac, (b + с ) а = ba + са.
Перечисленные свойства показывают, что элементы К. образуют коммутативную группу относительно сложения. Дальнейшими примерами К. могут служить множества; 4) всех действительных чисел; 5) всех комплексных чисел; 6) комплексных чисел вида a + bi с целыми а, b ; 7) многочленов от одного переменного х с рациональными, действительными или комплексными коэффициентами; 8) всех функций, непрерывных на данном отрезке числовой прямой; 9) всех квадратных матриц порядка n с действительными (или комплексными) элементами; 10) всех кватернионов ; 11) всех чисел Кэли — Диксона, то есть выражений вида a + bе, где a, b — кватернионы, е — буква; сложение и умножение чисел Кэли — Диксона определяются равенствами (a + bе) + (a1 + b1 e) = (a + a1 ) + (b + b1 ) e, (a + bе)(a1 + b1 e) = (aa1 — b
Во многих случаях на умножение в К. налагаются дополнительные ограничения. Так, если а (bc ) = (ab ) c, то К. называют ассоциативным (примеры 1—10); если в К. выполняются равенства (aa ) b = a (ab ), (ab ) b = a (bb ), то оно называется альтернативным кольцом (пример 11); если в К. выполняются равенства ab = ba, (ab ) (аа ) = ((аа ) b ) a, то оно называется йордановым кольцом (пример 12); если в К. выполняются равенства а (bc ) + b (ca ) + с (аb ) = 0, a2 = 0, то оно называется кольцом Ли (пример 13); если ab = ba, то К. называют коммутативным (примеры 1—8, 12). Операции сложения и умножения в К. во многом похожи по своим свойствам на соответствующие операции над числами. Так, элементы К. можно не только складывать, но и вычитать; существует элемент 0 (нуль) с обычными свойствами; для любого элемента а существует противоположный, т. е. такой элемент —а, что а + (—a ) = 0; произведение любого элемента на элемент 0 всегда равно нулю. Однако на примерах 8—9, 12—13 можно убедиться, что К. может содержать отличные от нуля элементы а, b, произведение которых равно нулю: ab = 0; такие элементы называют делителями нуля. Ассоциативное коммутативное К. без делителей нуля называют областью целостности (примеры 1—7). Так же, как и в области целых чисел, не во всяком К. возможно деление одного элемента на другой, если же это возможно, то есть если всегда разрешимы уравнения ax = b и уа = b при а ¹0, то К. называют телом (примеры 3—5, 10, 11). Ассоциативное коммутативное тело принято называть полем (примеры 3— 5) (см. Поле алгебраическое). Весьма важны для многих отделов алгебры К. многочленов с одним или несколькими переменными над произвольным полем и К. матриц над ассоциативными телами, определяемые аналогично К. примеров 7 и 9. Многие классы К. всё чаще находят приложения и вне алгебры. Важнейшими из них являются: К. функций и К. операторов, сыгравшие большую роль в развитии функционального анализа; альтернативные тела, применяемые в проективной геометрии; так называемые дифференциальные К. и поля, отразившие интересную попытку применить теорию К. к дифференциальным уравнениям.
При изучении К. большое значение имеют те или иные способы сличения друг с другом различных К. Одним из наиболее плодотворных является гомоморфное отображение (гомоморфизм), т. е. такое однозначное отображение R ®R' кольца R на кольцо R', что из а ® a', b ®b' следует а + b ® a' +b' и ab ® a'b'. Если это отображение также и взаимно однозначное, то оно называется изоморфизмом, а кольца R и R' изоморфными. Изоморфные К. обладают одинаковыми алгебраическими свойствами.
Множество М элементов кольца R называют подкольцом, если М само является К. относительно операций, определённых в R. Подкольцо М называют левым (правым или двусторонним) идеалом кольца R, если для любых элементов т из М и r из R произведение rm (соответственно mr или как rm, так и mr ) лежит в М. Элементы а и b кольца R называют сравнимыми по идеалу М, если а — b принадлежит М. Всё К. разбивается на классы сравнимых элементов — классы вычетов по идеалу М. Если определить сложение и умножение классов вычетов по двустороннему идеалу М через сложение и умножение элементов этих классов, то сами классы вычетов образуют К. — фактор кольцо R/M кольца R по идеалу М. Имеет место теорема о гомоморфизме К.: если каждому элементу К. поставить в соответствие содержащий его класс, то получают гомоморфное отображение кольца R на факторкольцо RM; обратно, если R гомоморфно отображается на R', то множеством элементов из R, отображающихся в нуль кольца R', будет двусторонним идеалом в R, и R' изоморфно R/M.
Среди различных типов К. легче других поддаются изучению и сравнительно чаще находят приложение так называемые алгебры: кольцо R называют алгеброй над полем Р, если для любых a из Р и r из R определено произведение ar также из R, причём (a + b) r = ar + br , a(r + s )= ar + as, (ab) r = a(br), a(rs ) = (ar ) s = r (as ), er = r для любых a, b из Р и r, s из R, где e — единица поля Р. Если все элементы алгебры линейно выражаются через n линейно независимых элементов (см. Линейная зависимость ), то R называют алгеброй конечного ранга n, или гиперкомплексной системой (см. Гиперкомплексные числа ). Примерами алгебр могут служить комплексные числа (алгебра ранга 2 над полем действительных чисел), полное К. матриц с элементами из поля Р (которое является алгеброй ранга n2 над Р ), К. примера 10 (алгебра ранга 4 над полем действительных чисел), К. примера 8 и др.
Для целых чисел и К. многочленов справедлива теорема об однозначной разложимости элемента в произведение простых, т. с. далее не разложимых элементов. Эта теорема верна для любых К. главных идеалов, то есть областей целостности, в которых любой идеал состоит из кратных одного элемента. Частным случаем таких К. являются евклидовы К., то есть К., где любому элементу а ¹ 0 соответствует неотрицательное целое число n (a ), причём n (ab ) ³ n (a ) и для любых а и b ¹ 0 существуют такие q и r, что а = bq +r и либо n (r )<n (b ), либо r = 0. Таковы, например, К. многочленов и К. примеров 1 и 6. Для широкого класса К. верна теорема об однозначном разложении идеала в произведение простых идеалов, хотя для самих элементов она не выполняется. Основы теории разложения идеалов и абстрактных К. были заложены Э. Нётер (в 20-х гг. 20 в.).