Большая Советская Энциклопедия (ЛЕ)
Шрифт:
Обычно полёт Л. а. состоит из 3 основных этапов: взлёт (разбег, набор высоты), установившийся полёт (полёт с приблизительно постоянной скоростью), посадка (торможение, спуск до соприкосновения с поверхностью планеты, пробег). Некоторые этапы полёта могут отсутствовать или принимать специфическую форму. Для разбега Л. а. при взлёте обычно используется тяга двигателя, установленного на нём. Взлёт Л. а. может осуществляться также и с помощью дополнительных устройств вне Л. а. (катапульт и т.п. средств). На втором этапе, при установившемся прямолинейном полёте, равнодействующая всех сил, приложенных к Л. а., равна нулю. На третьем этапе полёта скорость постепенно уменьшается до небольшой величины, обеспечивающей безопасную посадку. Для этого необходима сила, почти уравновешивающая силу притяжения, и сила, тормозящая движение по горизонтали.
Л. а. легче воздуха (аэростат, дирижабль и др.). Подъёмная сила аппаратов этого класса имеет аэростатическую природу (см. Воздухоплавание).
Л. а. тяжелее воздуха (самолёт, планёр, вертолёт, винтокрыл и др.). Подъёмная сила аппаратов этого класса имеет преимущественно аэродинамическую природу. В некоторых случаях используется также газодинамический принцип создания подъёмной силы. Наиболее распространённым Л. а. тяжелее воздуха является самолёт. Его подъёмная сила создаётся в основном крылом. Значительно меньшая доля приходится на подъёмную силу фюзеляжа и оперения. Рассматриваются проекты самолётов для полётов при гиперзвуковых скоростях, у которых подъёмная сила образуется в основном корпусом. Тяга самолёта создаётся с помощью поршневого, газотурбинного или воздушно-реактивного двигателя. Ракетный двигатель используется на самолёте редко (обычно в качестве ускорителя). На перспективном гиперзвуковом самолёте возможно применение ракетного двигателя как основного средства создания тяги. Для управления самолётом используются аэродинамические органы (рули высоты и направления, элероны и др.), а также регулирование тяги.
Подъёмная сила крыла изменяется приблизительно пропорционально квадрату скорости полёта. При малых скоростях подъёмной силы крыльев недостаточно для отрыва самолёта от поверхности Земли. Для каждого самолёта существует минимальная скорость, при которой подъёмная сила крыльев равна весу самолёта. Поэтому при взлёте необходим разбег для достижения её, а при посадке — пробег, чтобы погасить её до нуля. Это приводит к необходимости создания аэродромов со взлётно-посадочными полосами. Уменьшение минимальной скорости и соответствующее сокращение длины разбега и пробега самолёта достигается увеличением подъёмной силы крыльев посредством их механизации (см. Механизация крыла), сдува пограничного слоя с крыла, обдува крыла струями от винтов и др. способами.
Подъёмная сила может быть создана и на неподвижном Л. а. Для этого его крылья должны двигаться относительно корпуса Л. а. Известны проекты Л. а. с машущими и колеблющимися крыльями (см.Орнитоптер). Применение нашёл вертолёт — Л. а. с несущим винтом, который можно рассматривать как систему крыльев, вращающихся в плоскости, близкой к горизонтальной. Наклоном плоскости вращения несущего винта к направлению полёта создаётся не только подъёмная сила, но и тяга. У винтокрыла подъёмная сила создаётся одновременно несущим винтом и крылом, а тяга — тянущим и несущим винтами. Существуют самолёты с винтами, плоскость вращения которых может изменяться от вертикальной до горизонтальной. Такие самолёты могут совершать вертикальные взлёт и посадку. Использование газодинамического принципа создания подъёмной силы позволяет и реактивному самолёту летать с малыми скоростями и даже «висеть», совершать вертикальные или укороченные взлёт и посадку. Это достигается отклонением вниз струи реактивного двигателя посредством поворотных сопл либо использованием специальных вертикально установленных двигателей.
Космические Л. а. (автоматическая межпланетная станция, искусственный спутник Земли, космический корабльи др.). Из-за большого своеобразия различных этапов космического полёта и для уменьшения массы космического Л. а. делается составным. Он состоит обычно из следующих автономных частей: стартовой ракеты, орбитального или межпланетного корабля, аппарата, спускаемого на поверхность планеты. Стартовая ракета разгоняет Л. а. до скорости, равной или превосходящей орбитальную. Управление ракетой осуществляется изменением значения и направления действия тяги ракетных двигателей, а при наличии на планете атмосферы — также посредством аэродинамических рулей. Орбитальным и межпланетным кораблями управляют с помощью ракетных двигателей. При дальних межпланетных перелётах ракетный двигатель целесообразно применять также для дополнительного разгона межпланетного корабля с целью уменьшения продолжительности перелёта. Эффективность использования рабочего вещества в двигателе тем выше, чем больше скорость истечения газа из него. В ракетных двигателях поток газа разгоняют путём его нагревания за счёт сжигания химического горючего и последующего расширения в сопле. Разрабатываются двигатели для космических Л. а., в которых поток газа разгоняется до более высоких скоростей, чем в ракетном двигателе (плазменный двигатель, электростатический
Лит. см. при статьях Авиация, Воздухоплавание и Космонавтика.
В. Я. Боровой.
Рис. 2г. Внешний вид вертолёта Ми-10.
Рис. 3б. Внешний вид самолета с вертикальным взлетом и посадкой.
Рис. 1а. Схема, поясняющая аэростатический принцип создания подъёмной силы. На схеме: р — давление воздуха; r — плотность воздуха; g — ускорение силы тяжести; h — высота аэростата; Об. — оболочка аэростата. Стрелками показано распределение давления на поверхности летательного аппарата, окружённого воздухом.
Рис. 1б. Внешний вид дирижабля.
Рис. 3а. Схема, поясняющая газодинамический принцип создания подъемной силы. На схеме: 1 — компрессор; 2 — форсунки для распыления топлива; 3 — камера сгорания; 4 — газовая турбина; 5 — газодинамические рули, отклоняющие струю газов и, следовательно, изменяющие направление тяги двигателя.
Рис. 2б. Внешний вид самолёта Ту-124.
Рис. 2а. Схема, поясняющая аэродинамический принцип создания подъёмной силы крылом дозвукового самолёта. На схеме: r — давление воздуха; a — угол атаки крыла; V — скорость полёта; У — подъёмная сила; Р — тяга; НВ — несущий винт; ПВ — плоскость вращения несущего винта. Стрелками показано распределение давления на поверхности крыла.
Рис. 2в. Схема, поясняющая аэродинамический принцип создания подъёмной силы несущим винтом вертолёта. На схеме: r — давление воздуха; a — угол атаки крыла; V — скорость полёта; У — подъёмная сила; Р — тяга; НВ — несущий винт; ПВ — плоскость вращения несущего винта. Стрелками показано распределение давления на поверхности крыла.
Летающая лодка
Лета'ющая ло'дка, гидросамолёт с водоизмещающим корпусом в виде лодки, где размещаются экипаж, пассажиры и установлено необходимое навигационно-пилотажное оборудование.
Летающие ящеры
Лета'ющие я'щеры, птерозавры (Pterosauria), надотряд вымерших пресмыкающихся подкласса архозавров. Жили в юрский и меловой периоды. В процессе приспособления к летанию Л. я. значительно специализировались. Между боками тела и передними конечностями с чрезвычайно длинным наружным пальцем была натянута кожная перепонка — крыло. Тело Л. я. имело, судя по сохранившимся отпечаткам, покров типа волосяного; возможно, они были теплокровными. Кости у Л. я. лишены губчатой ткани, часто полые; череп без видимых швов между костями, глазницы очень большие. У ранних форм (рамфоринхи) зубы острые, хорошо развиты; у поздних форм (птеродактили) они редуцированы, а челюсти превращены в беззубый клюв, покрытый роговым чехлом. Хвост, длинный у рамфоринхов, очень короткий у птеродактилей. Шея у всех Л. я. удлинённая, подвижная; грудина очень мощная. Размеры Л. я. от воробья до гигантов с размахом крыльев более 7 м (птеранодон). Обитали по берегам морей и др. водоёмов, питаясь преимущественно рыбой, мелкие же — насекомыми. Многочисленные остатки Л. я. известны из Северной Америки и Западной Европы; в СССР найдены в Южном Казахстане и Поволжье. Л. я. — очень интересный пример конвергенции пресмыкающихся с птицами и млекопитающими (рукокрылые).