Большая Советская Энциклопедия (ПО)
Шрифт:
Логические законы , соответствующие правильным рассуждениям в П. л. (или же правила, кодифицирующие способы таких рассуждений), описываются и каталогизируются в соответствующих логических исчислениях , из которых важнейшими являются положительное импликативное исчисление высказываний с единственной логической операцией — импликацией, и полное положительное исчисление высказываний с конъюнкцией , дизъюнкцией , импликацией и эквиваленцией.
Положительное импликативное исчисление высказываний (подробно об исчислении высказываний см. в ст. Логика )
1. А 'E (В 'E A),
2. (A 'E (В 'E С )) 'E ((А 'E В ) 'E (А 'E C )
и правила modus ponens; полное положительное исчисление высказываний — добавлением к схемам (1) и (2) следующих:
3. (А & В ) 'E А ,
4. (A & В ) 'E В,
5. А 'E (В 'E (A & В )),
6. (A 'E С ) 'E ((B 'E С ) 'E ((А 'U В ) 'E C )),
7. А 'E (A 'UB ),
8. В 'E (A 'U B )
и определения эквиваленции как сокращения для выражения (А 'E В ) & (В 'E А ). Более сильные логические исчисления получаются из исчислений П. л. последовательным неконсервативным расширением (усилением) их систем аксиом или правил вывода. Так, присоединение к (1) и (2) аксиомной схемы
9. (А 'E В ) 'E ((А 'E`u В ) 'E `u А )
или соответствующего ей правила reductio ad absurdum даёт минимальную логику Колмогорова (1925), а аналогичное добавление к полному положительному исчислению высказываний — минимальную логику Иохансона (1936). Присоединяя: к последней схему
10. `u А 'E (А 'E В )
(противоречие влечёт произвольное утверждение) и схему
11. `u А (А
(исключенного третьего принцип ), получают соответственно интуиционистскую и классическую логику высказываний.
Поскольку все законы П. л. имеют силу (доказуемы) в интуиционистской и классической логике (обратное, естественно, неверно), положительные исчисления обычно рассматривают как их подсистемы — вообще как «частичные системы». Существенно, однако, что положительные исчисления, взятые «сами по себе», и «те же» исчисления «внутри» более сильной логики — это исчисления с различной семантикой логических связок (операций), которая для первых детерминируется только их собственными аксиомами или правилами употребления связок, а для вторых наследуется от более сильной логики.
Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, § 26; Расёва Е., Сикорский Р., Математика метаматематики, пер. с англ., М., 1972, гл. 1:1, §§ 2—6.
М. М. Новосёлов.
Положительно-определённая форма
Положи'тельно-определённая фо'рма , выражение вида
где aik= aki , принимающее неотрицательные значения при любых действительных значениях x1 , х2 ,..., xn и обращающееся в нуль лишь при x1 = х2 =... = xn = 0. Т. о., П.-о. ф. есть квадратичная форма специального типа. Любая П.-о. ф. приводится с помощью линейного преобразования к виду
Для того чтобы
была П.-о. ф. необходимо и достаточно, чтобы D1 > 0, …, Dn > 0, где
В любой аффинной системе координат расстояние точки от начала координат выражается П.-о. ф. от координат точки. Форма