Большая Советская Энциклопедия (ПО)
Шрифт:
Условие сильного легирования:
Равновесные концентрации носителей тока в полупроводниках . При отсутствии внешних воздействий (освещения, электрического поля и т.п.) концентрации электронов и дырок в П. полностью определяются температурой, шириной его запрещенной зоны DE , эффективными массами носителей, концентрациями и пространственным распределением примесей и дефектов, а также энергиями связи электронов и дырок с ними. Это т. н. равновесные концентрации носителей.
При самых низких температурах (вблизи Т = 0 К) все собственные электроны П. находятся в валентной зоне и целиком заполняют её, а примесные локализованы вблизи примесей или дефектов, так что свободные носители отсутствуют. При наличии в образце доноров и акцепторов электроны с доноров могут перейти к акцепторам. Если концентрация доноров Nd больше концентрации акцепторов Na , то в образце окажется Na отрицательно заряженных акцепторных ионов и столько же положительно заряженных доноров. Только Nd — Na доноров останутся нейтральными и способными с повышением температуры отдать свои электроны в зону проводимости. Такой образец является П. n– типа с концентрацией носителей Nd — Na . Аналогично в случае Na > Nd П. имеет проводимость р– типа. Связывание донорных электронов акцепторами называется компенсацией примесей, а П., содержащие доноры и акцепторы в сравнимых концентрациях, — компенсированными.
С повышением температуры тепловое движение «выбрасывает» в зону проводимости электроны с донорных атомов и из валентной зоны (для определённости имеется в виду проводимость n– типа). Однако если энергия ионизации донора Ed << DE (что обычно имеет место), а температура не слишком высока, то первый из этих процессов оказывается доминирующим, несмотря на то, что число доноров во много раз меньше числа валентных электронов. У П. появляется заметная примесная электронная проводимость, быстро растущая с ростом температуры. Концентрация электронов в зоне проводимости при этом во много раз больше концентрации дырок в валентной зоне. В таких условиях электроны называются основными носителями, а дырки — неосновными (в П. р– типа наоборот: основные носители — дырки, неосновные — электроны). Рост концентрации свободных носителей с температурой продолжается до тех пор, пока все доноры не окажутся ионизованными, после чего концентрация в широком температурном интервале остаётся почти постоянной и равной: n = Nd — Na . Число же электронов, забрасываемых тепловым движением в зону проводимости из валентной зоны, продолжает экспоненциально нарастать и при некоторой температуре становится сравнимым с концентрацией примесных электронов, а потом и во много раз большим, т. е. снова начинается быстрое возрастание с температурой суммарной концентрации свободных носителей. Это область собственной проводимости П., когда концентрации электронов n и дырок р практически равны: n = p = ni . Рост числа собственных носителей тока продолжается вплоть до самых высоких температур, и концентрация их может достигать при Т = 1000 К значений, лишь на 1—3 порядка меньших, чем концентрация электронов проводимости в хороших металлах . температура, при которой происходит переход от примесной к собственной проводимости, зависит от соотношения между Ed и DE , а также от концентраций Nd и Na . В Ge с примесью элементов V группы полная ионизация доноров происходит уже при температурах Т ~ 10 К, если Nd ~1013см– 3 и при Т = 30 К, если Nd ~ 1016см– 3 , а переход к собственной проводимости при Т = 300 К для Nd ~ 1013см– 3 и при Т = 450 К для Nd ~ 1016см– 3 (рис. 5 ).
Определение равновесных концентраций носителей тока в П. основывается на распределении Ферми (см. Статистическая физика ) электронов по энергетическим состояниям (в зонах и на примесных уровнях). Вероятность f того, что состояние с энергией E занято электроном, даётся формулой:
Здесь EF — уровень Ферми — энергия, отделяющая уровни преимущественно заполненные (f > 1 /2 ) от преимущественно незаполненных (f < 1 /2 ).
Если уровень Ферми лежит в запрещенной зоне на расстоянии > kT от дна зоны проводимости и от потолка валентной зоны, то в зоне проводимости f << 1, т. е. мало электронов, а в валентной зоне 1 — f << 1, т. е. мало дырок. В этом случае принято говорить, что электроны и дырки невырождены, в отличие от случая вырождения, когда уровень Ферми лежит внутри одной из разрешенных зон, например в зоне проводимости на расстоянии >> kT от её дна. Это означает, что все состояния в этой зоне от дна до уровня Ферми заполнены носителями тока с вероятностью f (E ) » 1.
Положение уровня Ферми зависит от температуры и легирования. В объёме пространственного однородного П. оно определяется условием сохранения полного числа электронов или, иными словами, условием электронейтральности:
n + Na– = р + N+d (10)
Здесь Nd — концентрация ионизованных доноров, Na– — акцепторов, захвативших электрон.
В сильно легированных П. концентрация носителей остаётся постоянной и равной (Nd — Na ) при всех температурах вплоть до области собственной проводимости, где они не отличаются от др. П. (кривая 2, рис. 5 ). При низких температурах носители в сильно легированных П. вырождены, и такие П. формально следовало бы отнести к плохим металлам. Они действительно обнаруживают ряд металлических свойств, например сверхпроводимость (SrTiO3 , GeTe, SnTe) при очень низких температурах.
Неравновесные носители тока . Важной особенностью П., определяющей многие их применения, является возможность относительно легко изменять в них концентрации носителей по сравнению с их равновесными значениями, т. е. вводить дополнительные, неравновесные (избыточные) электроны и дырки. Генерация избыточных носителей возникает под действием освещения, облучения потоком быстрых частиц, приложения сильного электрического поля и, наконец, инжекции («впрыскивания») через контакты с др. П. или металлом.
Фотопроводимость полупроводников — увеличение электропроводности П. под действием света; как правило, обусловлена появлением дополнительных неравновесных носителей в результате поглощения электронами квантов света с энергией, превышающей энергию их связи. Различают собственную и примесную фотопроводимости. В первом случае фотон поглощается валентным электроном, что приводит к рождению пары электрон — дырка. Очевидно, такой процесс может происходить под действием света с длиной волны, соответствующей области собственного поглощения П.:
Явление фотопроводимости позволяет за короткое время (~ мксек или ~ нсек ) изменять электропроводность П. в очень широких пределах, а также даёт возможность создавать высокие концентрации носителей тока в П., в которых из-за относительно большой DE и отсутствия подходящих примесей не удаётся получить заметных равновесных концентраций носителей. Использование фотопроводимости П. с разными DE и глубиной примесных уровней (Si, Te, InSb, PbS, CdS, РЬТе, Ge, легированный Zn или Au и т.д.) позволяет создавать высокочувствительные приёмники света для различных областей спектра от далёкой инфракрасной до видимой (см. Инфракрасное излучение , Фотопроводимость ).