Большая Советская Энциклопедия (ПО)
Шрифт:
Недостатки П. д.: малая эффективность при регистрации g-квантов больших энергии; ухудшение разрешающей способности при загрузках > 104 частиц в сек; конечное время жизни П. д. при высоких дозах облучения из-за накопления радиационных дефектов (см. Радиационные дефекты в кристаллах ). Малость размеров доступных монокристаллов (диаметр ~ 3 см, объём ~ 100 см3 ) ограничивает применение П. д. в ряде областей.
Дальнейшее развитие П. д. связано с получением «сверхчистых» полупроводниковых монокристаллов больших размеров и с возможностью использования GaAs, SiC, CdTe (см. Полупроводниковые
Лит.: Полупроводниковые детекторы ядерных частиц и их применение, М., 1967; Дирнли Дж., Нортроп Д., Полупроводниковые счетчики ядерных излучений, пер. с англ., М., 1966; Полупроводниковые детекторы ядерного излучения, в сборнике: Полупроводниковые приборы и их применение, в. 25, М., 1971 (Авт.: Рывкин С. М., Матвеев О. А., Новиков С. Р., Строкан Н. Б.).
А. Г. Беда. В. С. Кафтанов.
Полупроводниковые детекторы; штриховкой выделена чувствительная область; n — область полупроводника с электронной проводимостью, р — с дырочной, i — с собственной проводимостями; а — кремниевый поверхностно-барьерный детектор; б — дрейфовый германий-литиевый планарный детектор; в — германий-литиевый коаксиальный детектор.
Полупроводниковый диод
Полупроводнико'вый дио'д, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов . В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.
Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n– перехода). Если к р—n– переходу диода (рис. 1 ) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер , соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р– области в n– область и электронов из n– области в р– область — течёт большой прямой ток (рис. 2 ). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n- переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.
На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными. При напряжениях, превышающих U*o6p , ток резко возрастает, и возникает необратимый (тепловой) пробой р—n– перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы , в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок (см. Полупроводники ) составляет > 10– 5 —10– 4сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц ).
Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10– 7— 10– 10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами , главным образом в слаботочных сигнальных цепях ЭВМ.
При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р—n– перехода — резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации Ucт . На использовании такого пробоя основана работа полупроводниковых стабилитронов . Стабилитроны общего назначения с Ucт от 3—5 в до 100—150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность Ucт (до 1x10– 5 — 5x10– 6 К– 1 ), — в качестве источников эталонного и опорного напряжений.
В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р—n- перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р—n– переходе (характеризующаяся временем 10– 9 —10– 10сек ) обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах , позволяющих осуществлять генераторы с частотами до 150 Ггц.
Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р—n– переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис. 3 ), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.
При подаче на р—n– переход обратного смещения, не превышающего U*обр , он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в варикапах , применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах , служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Св от напряжения Uo6p .