Большая Советская Энциклопедия (ПО)
Шрифт:
Постоянная палата третейского суда
Постоя'нная пала'та трете'йского суда' , международный арбитражный орган, учрежденный на основе Конвенции о мирном разрешении международных столкновений, принятой на 1-й Гаагской конференции 29 июля 1899 (пересмотрена на 2-й Гаагской конференции мира 18 октября 1907). Находится в Гааге. Палата образована для облегчения государствам возможности обращения к третейскому суду при возникновении споров, которые не могли быть урегулированы дипломатическим путём. В состав палаты входят лица, назначенные договаривающимися сторонами (не более 4 от каждой стороны). Обращение к услугам палаты не является обязательным: стороны по своему выбору могут передать спор на рассмотрение другого третейского суда, созданного по их обоюдному согласию. П. п. т. с. не является постоянно действующим органом с определённым составом судей, существует лишь постоянный список лиц (специалистов по международному праву), из числа которых в каждом конкретном случае образуется третейский суд.
Постоянный орган П. п. т. с. — Международное бюро (канцелярия палаты), деятельностью которого руководит Постоянный административный совет (состоит из аккредитованных в Гааге глав
СССР является участником конвенции о П. п. т, с., с 1956 назначает совет юристов членами палаты, в состав палаты входят также по 4 юриста от УССР и БССР.
Постоянного тока генератор
Постоя'нного то'ка генера'тор, постоянного тока машина , работающая в генераторном режиме. Работа П. т. г. описывается следующими уравнениями: Р = U xIя , где Р — полезная мощность, U — напряжение на зажимах, Iя — ток якоря; U = Е — Iя Rя , где Е — эдс якоря, Rя — сопротивление в цепи якоря, Rя = rя + rд + rп (рис. 1 ). Основное требование, предъявляемое к П. т. г., — постоянство напряжения на его зажимах при изменении нагрузки. Зависимость между напряжением на зажимах машины и током нагрузки U = f (l ) называется внешней характеристикой и определяется системой возбуждения П. т. г. Схемы возбуждения представлены на рис. 1 ; внешние характеристики при различных схемах возбуждения показаны на рис. 2 , а. Уменьшение напряжения при росте нагрузки П. т. г. возникает из-за падения напряжения в цепи якоря и размагничивающего действия поля якоря, обусловленного насыщением магнитопровода. Оптимальной является система смешанного возбуждения (устаревшее название — компаундное возбуждение ), при которой можно получить одинаковое напряжение и при холостом ходе, и при номинальной нагрузке. Точная компенсация падения напряжения в цепи якоря (ротора) и размагничивающего влияния поля якоря, вызывающего уменьшение основного магнитного потока под нагрузкой, возможна лишь при одном значении тока нагрузки. При независимом возбуждении компенсация отсутствует. Большее уменьшение напряжения при самовозбуждении происходит вследствие уменьшения тока возбуждения с ростом нагрузки. Диапазон регулирования тока возбуждения для поддержания постоянства напряжения при изменении нагрузки определяют регулировочные характеристики П. т. г. Iв = f (I ) (рис. 2 , б).
Другое важное требование, которому должен отвечать П. т. г., — безыскровая коммутация тока. Уменьшение искрения обеспечивается дополнительными полюсами на статоре машины. Мощные П. т. г. иногда выполняют с компенсационной обмоткой, которая закладывается в пазы полюсных наконечников и соединяется последовательно с обмоткой якоря. Её назначение — компенсировать поле якоря в зоне под главными полюсами. Она автоматически обеспечивает компенсацию при всех нагрузках и равномерное распределение индукции под полюсной дугой. Т. о. снижается максимальное напряжение между соседними коллекторными пластинами и устраняется «потенциальное» искрение (вне зоны коммутации).
В СССР выпускаются П. т. г. как общего применения (серия 2П), так и специального назначения, например П. т. г. для электросварки (серии ГСО и ГД; серии ПСУ и ПСГ с приводом от асинхронного электродвигателя, на токи 125—500 а, при напряжении 60—70 в ), электромашинные усилители (ЭМУ). В системах автоматического регулирования применяются тахогенераторы (микромашины) постоянного тока, имеющие большую точность, чем тахогенераторы переменного тока.
Лит. см. при ст. Постоянного тока машина
Л. М. Петрова.
Рис. 2. Внешние (a) и регулировочные (б) характеристики генераторов постоянного тока: 1 — с самовозбуждением; 2 — с независимым возбуждением; 3 — со смешанным возбуждением; I — ток в нагрузке; Iв — ток возбуждения; U — напряжение на зажимах генератора; Rв — сопротивление для регулирования тока возбуждения; n — частота вращения якоря генератора.
Рис. 1. Схемы возбуждения генераторов постоянного тока: а — независимое; б — самовозбуждение; в — смешанное; Я — якорь; Д — обмотки дополнительных полюсов; В — параллельная обмотка возбуждения; П — последовательная обмотка возбуждения; Iя — ток якоря; I — ток в нагрузке; Rв — сопротивление для регулирования тока возбуждения; Iв — ток возбуждения; rя — сопротивление обмотки якоря; rд — сопротивление обмотки дополнительных полюсов; rв — сопротивление параллельной обмотки возбуждения; rп — сопротивление последовательной обмотки возбуждения; rн — нагрузка.
Постоянного тока машина
Постоя'нного то'ка маши'на, электрическая машина, в которой происходит преобразование механической энергии в электрическую энергию постоянного тока (генератор) или обратное преобразование (двигатель). П. т. м. обратима, т. е. одна и та же машина может работать и как генератор, и как двигатель; так, например, работают тяговые двигатели подвижного состава и исполнительные двигатели мощных электроприводов постоянного тока. Действие генератора основано на явлении индукции электромагнитной . При вращении витка из электропроводящего материала в постоянном магнитном поле (рис. 1 ) в витке возникает переменная эдс с частотой
Активными частями П. т. м. являются магнитные сердечники, обмотки статора и ротора (якоря) и коллектор (рис. 2 ). Магнитный сердечник статора состоит из стальной станины, шихтованных (набранных из стальных пластин) главных и массивных дополнительных полюсов. На главных полюсах расположена обмотка возбуждения, на дополнительных — обмотка, соединённая последовательно с обмоткой якоря. Магнитопровод (сердечник) якоря также шихтованный; в его пазах расположена рабочая обмотка. Конструктивные элементы П. т. м. — вал, подшипники, подшипниковые щиты, токосъёмное устройство, вентилятор. Обмотка возбуждения создаёт основное магнитное поле. При подключении обмотки якоря к внешней цепи по ней проходит ток, создающий магнитное поле якоря. Результирующий поток в зазоре между статором и ротором благодаря влиянию магнитного поля якоря меньше, чем поле при холостом ходе (когда цепь отключена). Размагничивающее действие магнитного поля якоря обусловлено насыщением и увеличением магнитного сопротивления полюсных наконечников.
При работе П. т. м. может появляться искрение под щётками в процессе коммутации тока. При прохождении секции обмотки якоря из зоны одной полярности (например, N ) в зону др. полярности (S ) направление тока в ней меняется на обратное. Вследствие этого в секции, замкнутой накоротко щёткой, индуктируется т. н. реактивная эдс. Она представляет собой сумму эдс самоиндукции, обусловленной изменением тока, и эдс взаимоиндукции (если коммутируются одновременно несколько секций). Помимо этого, в коммутируемой секции возникает т. н. эдс вращения, обусловленная перемещением секции в поле якоря, которое в зоне коммутации имеет наибольшую величину. Эти эдс вызывают замедление изменения тока, увеличение плотности тока под сбегающим краем щётки и искрение под щётками. Для компенсации реактивной эдс в коммутируемой секции применяют дополнительные полюса, изменяющие направление поля якоря в зоне коммутации. Наличие коллектора и щёточного устройства усложняет конструкцию, обусловливает высокую стоимость и сравнительно низкую надёжность П. т. м.
Первый двигатель постоянного тока, пригодный для практических целей, был построен Б. С. Якоби в 1838. Двигатель получал питание от гальванических батарей и использовался для привода гребного вала лодки. Первый генератор постоянного тока создан также Якоби в 1842. Вначале в П. т. м. использовались постоянные магниты. Существенным шагом вперёд явилось применение электромагнитов. В 1859 А. Пачинотти изобрёл электродвигатель с кольцевым якорем, который был усовершенствован З. Т. Граммом в 1869. Начало широкого промышленного применения П. т. м. относят к 70-м гг. 19 в., когда Ф. Хефнер-Альтенек заменил кольцевой якорь барабанным, упростив тем самым конструкцию П. т. м. и увеличив вдвое её мощность. В таком виде П. т. м. сохранилась практически без изменений, усовершенствования касались главным образом применения лучших изоляционных и конструкционных материалов, более прогрессивной технологии, разработки точных методов расчёта и оптимизации габаритов. П. т. м. были созданы и получили промышленное применение ранее машин переменного тока, но утратили доминирующее положение после изобретения М. О. Доливо-Добровольским системы трёхфазного тока (1889). П. т. м. использовались лишь в отдельных областях, где необходимо регулирование частоты вращения в широком диапазоне: генераторы — как возбудители синхронных машин, сварочные генераторы, в системах генератор-двигатель; двигатели — в электроприводах на транспорте, в металлургии (на мощных прокатных станах) и т.п. Однако с 50-х гг. 20 в. сфера применения П. т. м. вновь расширилась: П. т. м. средней мощности стали применять как электромашинные усилители (ЭМУ), а микроэлектромашины — в системах автоматического регулирования и в бытовых электрических устройствах. Микродвигатели постоянного тока имеют лучшие характеристики, больший диапазон регулирования по частоте вращения и более высокую точность регулирования, чем микродвигатели переменного тока. В то же время П. т. м. утрачивают своё значение как возбудители синхронных машин, на смену им приходят ионные и полупроводниковые системы возбуждения.