Большая Советская Энциклопедия (ПР)
Шрифт:
Приближение и интерполирование функций
Приближе'ние и интерполи'рование фу'нкций , раздел теории функций, посвященный изучению вопросов приближённого представления функций.
Приближение функций — нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических многочленов заданной степени), в том или ином смысле близкой к f, дающей её приближённое представление. Существует много разных вариантов задачи о приближении функций в зависимости от того, какие функции используются для приближения, как ищется приближающая функция g, как понимается близость функций f и g. Интерполирование функций — частный случай задачи приближения, когда требуется, чтобы в определённых точках (узлах интерполирования) совпадали значения функции f и приближающей её функции g,
Для оценки близости исходной функции f и приближающей её функции g используются в зависимости от рассматриваемой задачи метрики различных функциональных пространств. Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р- й степенью, Lp , р ³ 1, в которых расстояние между функциями f и g определяется (для функций, заданных на отрезке [а, b ]) по формулам
и
Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида
где (j1 ,..., jn —заданные функции, a a1 ,..., an — произвольные числа. Обычно это алгебраические многочлены
или тригонометрические полиномы
а +
Рассматриваются также полиномы по ортогональным многочленам , по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P (x )/Q (x ), где в качестве Р и Q берутся алгебраические многочлены заданной степени.
В последнее время (60—70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [a, b ] разбивается точками a = x0 < x1 <... < xn = b, на каждом отрезке [xk , xk+1 ] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [а, b ] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах xk приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов xk правильного их расположения на отрезке [а, b ]. Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.
Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.
Теория приближений функций берёт начало от работ П. Л. Чебышева . Он ввёл одно из основных понятий теории — понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f (x ) полиномами
En
где минимум берётся по всем числам а1 ,..., an . Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции xn+1 на отрезке [—1, 1] в метрике С алгебраическими многочленами степени n равно 1/2n , а многочлен наилучшего приближения таков, что для него
xn+1–
Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен
Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.
С начала 20 в. началось систематическое исследование поведения при n ® yen последовательности En
Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка
En
где q < 1 и А — некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).