Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ПР)
Шрифт:

Приближение и интерполирование функций

Приближе'ние и интерполи'рование фу'нкций , раздел теории функций, посвященный изучению вопросов приближённого представления функций.

Приближение функций — нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических многочленов заданной степени), в том или ином смысле близкой к f, дающей её приближённое представление. Существует много разных вариантов задачи о приближении функций в зависимости от того, какие функции используются для приближения, как ищется приближающая функция g, как понимается близость функций f и g. Интерполирование функций — частный случай задачи приближения, когда требуется, чтобы в определённых точках (узлах интерполирования) совпадали значения функции f и приближающей её функции g,

а в более общем случае — и значения некоторых их производных.

Для оценки близости исходной функции f и приближающей её функции g используются в зависимости от рассматриваемой задачи метрики различных функциональных пространств. Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р- й степенью, Lp , р ³ 1, в которых расстояние между функциями f и g определяется (для функций, заданных на отрезке [а, b ]) по формулам

и

Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида

ak jk (x ),

где (j1 ,..., jn —заданные функции, a a1 ,..., an произвольные числа. Обычно это алгебраические многочлены

ak xk

или тригонометрические полиномы

а +

(ak coskx + bk sinkx ).

Рассматриваются также полиномы по ортогональным многочленам , по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P (x )/Q (x ), где в качестве Р и Q берутся алгебраические многочлены заданной степени.

В последнее время (60—70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [a, b ] разбивается точками a = x0 < x1 <... < xn = b, на каждом отрезке [xk , xk+1 ] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [а, b ] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах xk приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов xk правильного их расположения на отрезке [а, b ]. Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.

Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.

Теория приближений функций берёт начало от работ П. Л. Чебышева . Он ввёл одно из основных понятий теории — понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f (x ) полиномами

ak jk (x ) в метрике С называется величина

En

= min || f -
ak
jk (x )||c ,

где минимум берётся по всем числам а1 ,..., an . Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции xn+1 на отрезке [—1, 1] в метрике С алгебраическими многочленами степени n равно 1/2n , а многочлен наилучшего приближения таков, что для него

xn+1

 = (1/2n ) cos (n + 1) arccosx .

Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен

, в том и только в том случае является многочленом наилучшего приближения непрерывной функции f в метрике С [—1, 1], если существуют n + 2 точки -1 lb x1 < x2 <... < xn+2 lb 1, в которых разность f (x ) 2
принимает максимальное значение своего модуля с последовательно чередующимися знаками.

Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.

С начала 20 в. началось систематическое исследование поведения при n ® yen последовательности En

— наилучших приближений функции f алгебраическими (или тригонометрическими) многочленами. С одной стороны, выясняется скорость стремления к нулю величин En
в зависимости от свойств функции (т. н. прямые теоремы теории приближений), а с другой — изучаются свойства функции по последовательности её наилучших приближений (обратные теоремы теории приближений). В ряде важных случаев здесь получена полная характеристика свойств функций. Приведём две такие теоремы.

Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка

En

lb Aq n ,

где q < 1 и А — некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).

Поделиться:
Популярные книги

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Ученик. Второй пояс

Игнатов Михаил Павлович
9. Путь
Фантастика:
фэнтези
боевая фантастика
5.67
рейтинг книги
Ученик. Второй пояс

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII