Большая Советская Энциклопедия (РА)
Шрифт:
Основные направления исследований: 1) теоретические и экспериментальные исследования электрических колебаний в колебательных системах с сосредоточенными параметрами (см. Колебательные системы,Колебательный контур) и в непрерывных средах (с распределёнными параметрами). Эти исследования — основа для разработки новых методов генерации, усиления и преобразования колебаний с частотами от 1—2 гц до 1011гц и выше (см. Автоколебания,Генерирование электрических колебаний,Параметрическое возбуждение и усиление электрических колебаний). Исследуются также влияние случайных (флуктуационных) процессов на электрические колебания в конкретных устройствах и методы выделения сигнала, несущего информацию, из совокупности полезных и случайных (например, шумовых) сигналов (статистическая радиофизика). Обе проблемы тесно связаны с общей математической теорией колебаний,
2) Взаимодействия электрических колебаний и электромагнитных волн радиодиапазона с носителями тока в вакууме, газах и твёрдых телах. Изучение взаимодействия электронных потоков в вакууме с электромагнитными полями позволило создать и усовершенствовать как электронные лампы (со статическим управлением электронными потоками), так и электронные приборы СВЧ (магнетрон,клистрон, лампа бегущей волны,лампа обратной волныи пр.). Исследование взаимодействия электромагнитных полей с ионизованным газом привело к созданию газоразрядных приборов (тиратрон,тригатрон и др.), которые широко используются в системах радиоэлектроники. Оно примыкает к общим исследованиям физических (в особенности колебательных) свойств плазмы и к исследованиям волновых процессов в природной плазме околоземного и межпланетного космического пространства.
Изучение взаимодействия электрических колебаний и волн радиодиапазона с электронными процессами в полупроводниках,электронно-дырочных переходах и гетероструктурах (см. Полупроводниковый гетеропереход), а также в ряде диэлектрических кристаллов и некоторых сверхпроводящих устройствах позволило создать твердотельные генераторы, усилители и преобразователи электрических колебаний различных частот — от самых низких до частот оптического диапазона (см. Полупроводниковый диод,Транзистор,Ганна диод,Джозефсона эффект,Квантовая электроника).
3) Излучение и распространение радиоволн. Теоретические и экспериментальные исследования излучения различных типов антенн, их электродинамический расчёт, а также изучение распространения радиоволн в различных направляющих (радиоволновод,фидер) и замедляющих системах играют важную роль в создании систем радиосвязи, передающих и приёмных устройств и др. При изучении распространения радиоволн над поверхностью земли и под нею с учётом конкретных условий, связанных с непостоянством геофизических и космических факторов, Р. соприкасается с геофизикой. Исследование особенностей распространения радиоволн на земных и космических радиотрассах возможно лишь на основе систематического накопления сведений о свойствах тропосферы,ионосферы, приземного и межпланетного космического пространства и их изменчивости во времени. С др. стороны, многие свойства геофизических объектов изучаются в основном радиофизическими методами, т. е по наблюдениям за особенностями протекания волновых и колебательных процессов в радиодиапазоне.
Развитие Р. сопровождается открытием новых явлений, находящих практическое применение и составляющих основу новых направлений (например, квантовая электроника). Некоторые разделы Р. выделяются в самостоятельные области физики (радиоастрономия,радиоспектроскопия,радиометеорология и др.), где методы Р. служат лишь средством изучения явлений, лежащих за пределами Р. Особую роль сыграло проникновение методов Р. в оптику (см. Нелинейная оптика).
В. В. Мигулин.
Радиофикация
Радиофика'ция в СССР, государственная система планомерного развития радио- и проводной (кабельной) сети вещания, обеспечивающая круглосуточную общественно-политическую и культурно-просветительскую информацию населения. Организация государственной системы радиовещания началась с первых лет Сов. власти. В середине 20-х гг. радиотехнической промышленностью выпущены первые радиоприёмники для коллективного слушания, работавшие на громкоговоритель и осуществлявшие приём программ (сообщений) в радиусе нескольких сот км от радиовещательной станции; громкоговорители для первых сов. музыкальных приёмников; детекторные радиоприёмники с головными телефонами (наушниками), рассчитанные на индивидуальный приём. Первые опыты проводного вещания осуществлены в Москве в 1924—25. К концу 1928 приёмная радиосеть имела 127 трансляционных радиоузлов, обслуживающих 11,7 тыс. радиоточек с громкоговорителями и 9,4 тыс. — с головными телефонами, 70 тыс. радиоприёмников (главным образом детекторного типа). Проводная трансляционная сеть развивалась в основном в городах; в сельской местности действовало 13,6% радиоточек, поэтому в 30-е гг. особое внимание уделялось Р. деревни. Создание сети узлов и точек проводного вещания позволило использовать радиовещание как одно из наиболее эффективных средств массовой информации, просвещения и воспитания трудящихся (к началу 1941 насчитывалось 11 тыс. трансляционных узлов, около 6 млн. радиоточек). К 1946 эта сеть (значительная часть которой была уничтожена в годы Великой Отечественной войны 1941—45) была почти полностью восстановлена (9,4 тыс. трансляционных узлов, свыше 5,6 млн. радиоточек). С 50-х гг. радиопромышленность начала массовый выпуск радиоприёмников и радиол (в 1957 в пользовании у населения было 16,5 млн. приёмников, в 1967 — около 40 млн., в 1974 — 55 млн.); бурными темпами расширялась сеть проводного вещания (в 1950 — 9,7 млн. радиоточек, в 1966 — 35,6 млн., в 1974 — 57 млн.). В 60-е гг. получило развитие 3-программное проводное вещание. В 1974 свыше 98% населения имело возможность слушать передачи проводного вещания. Приёмная сеть проводного и радиовещания принимает программы центрального и местного радиовещания на 67 языках народов СССР.
Б. П. Степанов.
Радиохимическая лаборатория
Радиохими'ческая лаборато'рия, специально оборудованная лаборатория, предназначенная для проведения химических операций с радиоактивными веществами. (Исследования с использованием метода меченых атомов в различных отраслях науки и техники — металлургии, машиностроении, биологии и т.д. — проводятся в специальных радиоизотопных лабораториях со специфическим оборудованием — плавильные печи, виварии, дендрарии и т.д.) В зависимости от группы токсичности изотопа (см. Радиоактивных веществ токсичность), его радиоактивности (активности) на рабочем месте и сложности химических операций все работы с радиоактивными изотопами, так же как и Р. л., разделяются на 3 класса. Класс Р. л. определяет комплекс защитных мероприятий (КЗМ), который должен обеспечить безопасные условия работы персонала и предотвратить загрязнение объектов внешней среды. КЗМ включает рациональное размещение, планировку и отделку помещений; эффективные системы вентиляции и канализации; контроль за соблюдением норм и правил радиационной безопасности; организацию системы транспортировки, получения, хранения и учёта радиоактивных изотопов, сбора и удаления радиоактивных отходов; выбор и отработку технологических режимов, защитной техники и оборудования; разработку прогноза возможных аварийных ситуаций и мер по их ликвидации. Неконтролируемый сброс газообразных, жидких и твёрдых радиоактивных отходов из радиохимических лабораторий всех классов запрещен.
Р. л. 3-го класса предназначены для проведения работ с наименьшими («индикаторными») активностями. В таких лабораториях осуществляется большинство аналитических, химических и биологических исследований с использованием радиоактивных изотопов в качестве изотопных индикаторов. Для защиты персонала от радиоактивных загрязнений и от излучения используют защитную одежду, кюветы из пластмассы или нержавеющей стали, простейшие дистанционные приспособления (пинцеты, щипцы и т.д.), защитные экраны из оргстекла, свинца и т.п. Работы с эманирующими (образующими радиоактивные изотопы радона), летучими, порошкообразными веществами проводятся в боксах или вытяжных шкафах. Предусмотрены дополнительные средства индивидуальной защиты (респираторы или противогазы, пластиковая спецодежда). В составе Р. л. 3-го класса рекомендуется иметь душевую и помещения для хранения и фасовки радиоактивных веществ.
Р. л. 2-го класса предназначены для проведения работ со средним уровнем активности (радиохимические, физико-химические, металлофизические, физические, некоторые биологические и др. виды работ). Лаборатории размещают в отдельном здании (или изолированной части здания). Предусматривается возможность быстрой и эффективной дезактивации моющими растворами помещения и оборудования. Операции с радиоактивными веществами проводятся в боксах или вытяжных шкафах с применением манипуляторов и др. дистанционных приспособлений, используются также перчатки, герметично вмонтированные в фасадную стенку. В составе лаборатории должен быть санпропускник или душевая для дезактивации тела или пластиковой спецодежды, пункт радиационного (дозиметрического) контроля на выходе и хранилище радиоактивных изотопов и отходов.
Р. л. 1-го класса (см. «Горячая» лаборатория) предназначены для проведения работ с высокими уровнями активности (верхний предел активности для них не устанавливается). Они оборудованы для работ по выделению радиоактивных изотопов из продуктов деления ядерного топлива, облученных материалов и мишеней, сборки тепловыделяющих элементов (ТВЭЛ) ядерных реакторов и др. работ, требующих высокого уровня герметизации защитного оборудования. Р. л. размещаются в отдельном здании или изолированной части здания с отдельным входом только через санпропускник. Для повышения безопасности работ Р. л. имеют 3-зональную планировку: I зона (необслуживаемые помещения) — камеры и боксы, где размещается оборудование для работы с радиоактивными веществами, являющееся основным источником радиоактивного загрязнения; II зона — помещения (периодически обслуживаемые) для проведения ремонта оборудования, транспортировки, загрузки и выгрузки радиоактивных материалов из I зоны, хранения радиоактивных отходов; III зона — помещения постоянного пребывания персонала, операторские, пульты управления и др. Для исключения переноса загрязнения между II и III зонами оборудуется санитарный шлюз с пунктом дозиметрического контроля. Все работы с радиоактивными веществами производятся в герметичных боксах и камерах с помощью дистанционных манипуляторов. Наблюдение ведётся с помощью перископов, окон из свинцового стекла, телевизионной аппаратуры. Степень герметизации защитного оборудования и надёжная биологическая защита обеспечивают полную безопасность для персонала в помещениях III зоны. В помещениях II зоны персонал работает в герметичных изолирующих костюмах в течение безопасного (предельно допустимого) времени. Помещения I зоны могут посещаться персоналом только в аварийных ситуациях или после проведения дезактивации дистанционными средствами до предельно допустимых уровней; безопасность работ и используемые защитные меры контролируются службой радиационной безопасности.