Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (РЕ)
Шрифт:

В неорганической химии широко используется классификация Р. х. по типам участвующих в них соединений и по характеру их взаимодействия: реакции образования и разложения, гидролиза, нейтрализации реакции, реакции окисления-восстановления. Большую группу Р. х. составляют различные реакции комплексообразования.

Органические реакции подразделяют на две большие группы: гетеролитические, при которых разрыв связи в молекуле происходит несимметрично и электроны остаются спаренными, и гомолитичные, в которых происходит симметричный разрыв связи, в результате чего образуются радикалы. В зависимости от типа атакующего реагента гетеролитические реакции могут быть нуклеофильными (обозначаются символом N) и электрофильными (символ Е). Основные три класса органических реакций включают замещения (обозначаются символом S с индексами N или Е), присоединения (символ А) и отщепления (элиминирования, символ Е). Каждая из этих реакций в зависимости от механизма может осуществляться как нуклеофильный, электрофильный или радикальный процесс. Особый класс реакций составляют

реакции циклоприсосдинения. С учётом молекулярности лимитирующей стадии различают мономолекулярные (например, SE 1) и бимолекулярные (например, SE 2) реакции. Помимо указанных механизмов, присоединения и замещения реакциимогут происходить в результате окислительно-восстановительного взаимодействия реагентов. Многие органические реакции включают ряд последовательных стадий, в том числе обратимых. Общая обратимость характерна для таких, например, реакций, как реакции металлирования и ароматического сульфирования. Возможны реакции, в которых промежуточные соединения вступают в параллельные реакции, что приводит к образованию смеси продуктов. Многочисленные превращения органических молекул включают процессы, происходящие без изменения состава, но приводящие к изменению химического строения (структуры) соединения, например различного типа изомеризации, молекулярные перегруппировки и таутомерные превращения (см. Органическая химия).

Понятие Р. х. является в известной степени условным. Так, к числу Р. х. обычно не относят образование ассоциатов в растворах, электронные возбуждения молекул (даже при существенном изменении равновесной геометрической конфигурации) и ряд др. процессов.

Лит.: Эмануэль Н. М., Кнорре Д. Г., Курс химической кинетики, 2 изд., М., 1969; Курс физической химии, под общ. ред. Я. И. Герасимова, 2 изд., т. 2, М., 1973; Матье Ж., Панико Р., Курс теоретических основ органической химии, пер. с франц., М., 1975.

Н. Ф. Степанов.

Реакционная плавка

Реакцио'нная пла'вка, способ получения металлов, в основе которого лежит взаимодействие между сульфидом и окислом извлекаемого металла (MeS + 2MeO = 3Ме + SO2) или между сульфатом и окислом (Me + MeSO4 = 2Me + 2SO2). В металлургии свинца Р. п. называют также горновой. Процесс осуществляется в специальном горне, куда загружают богатый свинцовый концентрат и кокс. Шихту продувают сжатым воздухом. За счёт горения кокса и тепла, выделяющегося при окислении сульфидов, температура в горне поднимается до 700—900 °С; при этой температуре протекают основные взаимодействия Р. п., приводящие к вытапливанию чернового свинца. Шихта во время реакции должна находиться в рыхлом состоянии; контакт между компонентами достигается непрерывным перегребанием с помощью механического перегребателя. В черновой свинец переходит 70% металла из шихты, в т. н. серые шлаки 10—15%, в пыль 15—20%. Серые шлаки для доизвлечения свинца перерабатываются в шахтной печи, пыль возвращается в шихту Р. п. Принципы Р. п. используются в новых процессах получения свинца из частично обожжённых сульфидных концентратов: электроплавкой (Швеция), плавкой во взвешенном состоянии (Швеция, Финляндия), вдуванием концентратов в жидкую ванну конвертера (США). Взаимодействия, характерные для Р. п., используются в металлургии сурьмы при плавке окисленных и сульфидных концентратов, а также при конвертировании медных штейнов.

В. Я. Зайцев.

Реакционная способность

Реакцио'нная спосо'бность, характеристика химической активности веществ, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Например, благородные металлы (Au, Pt) и инертные газы (Не, Ar, Kr, Xe) химически инертны, т. е. у них низкая Р. с.; щелочные металлы (Li, Na, К, Cs) и галогены (F, Cl, Вг, I) химически активны, т. е. обладают высокой Р. с. В органической химии насыщенные углеводороды характеризуются низкой Р. с., для них возможны немногочисленные реакции (радикальное галогенирование и нитрование, дегидрирование, деструкция с разрывом С—С-связей и некоторые др.), происходящие в жёстких условиях (высокая температура, ультрафиолетовое облучение). Для галогенопроизводных насыщенных углеводородов уже возможны, кроме того, реакции дегидрогалогенирования, нуклеофильного замещения галогена, образования магнийорганических соединений и др., происходящие в мягких условиях. Наличие в молекуле двойных и тройных связей, функциональных групп (гидроксильной —ОН, карбоксильной —СООН, аминогруппы —NH2 и др.) приводит к дальнейшему увеличению Р. с. Количественно Р. с. выражают константами скоростей реакций (см. Кинетика химическая) или константами равновесия в случае обратимых процессов (см. Равновесие химическое). Современные представления о Р. с. основаны на электронной теории валентности (см. Валентность) и на рассмотрении распределения (и смещения под действием реагента) электронной плотности в молекуле. Электронные смещения качественно описываются в терминах индуктивных и мезомерных эффектов (см. Мезомерия), количественно — с применением квантовомеханических расчётов (см. Квантовая химия). Главный фактор, определяющий относительную Р. с. в ряду родственных соединений, — строение молекулы: характер заместителей, их электронное и пространственное влияние на реакционный центр (см. Пространственные затруднения), геометрия молекул (см. Конфигурация молекул, Конформация). Р. с. зависит и от условий реакции (природы среды, присутствия катализаторов или ингибиторов, давления, температуры, облучения и т.п.). Все эти факторы оказывают на скорость реакций различное, а иногда противоположное влияние в зависимости от механизма данной реакции. Количественная связь между константами скорости (или равновесия) в пределах одной реакционной серии может быть представлена корреляционными уравнениями, описывающими изменения констант в зависимости от изменения какого-либо параметра (например, эффекта заместителя — уравнение Гаммета — Тафта, полярности растворителя — уравнение Брёнстеда и т.п.). См. также Реакции химические,Обратимые и необратимые реакции,Скорость химической реакции,Активированный комплекс,Катализ,Ориентации правила,Электронные теории в органической химии,Радикалы свободные.

Реакция (в психологии)

Реа'кция в психологии, акт поведения, возникающий в ответ на определенное воздействие, стимул; произвольное движение, опосредованное задачей и возникающее в ответ на предъявление сигнала. Необходимость исследования произвольной Р. возникла после того, как обнаружили, что астрономы, засекающие момент прохождения звезды через меридиан, дают разные показания, Ф. Бессель, открывший этот феномен, провёл эксперимент (1823), в котором измерил время Р. человека на раздражители. Измерение скорости, интенсивности, формы протекания Р. создало психометрию как отрасль психологии со специальным методом исследования — методом Р. (Ф. Дондерс, Дания; В. Вундт, Л. Ланге, Н. Н. Ланге). В советской психологии изучением реакций занимался К. Н. Корнилов, основатель реактологии. Выделяют два основных типа реакций: простые, когда на один, заранее известный сигнал, человек немедленно отвечает движением (моторная и сенсорная Р.), и сложные, когда при случайном предъявлении разных сигналов человек отвечает только на один из них (Р. различения) или на все, но разными движениями (Р. выбора). Изучение Р. позволило сформулировать ряд закономерностей для прикладной психологии, например закон Хика: время Р. увеличивается с увеличением числа стимулов, предлагаемых для различения.

Лит.: Вундт В., Основы физиологической психологии, в. 1—16, СПБ. 1908—14; Инженерная психология за рубежом. Сб. ст., пер. с англ., М., 1967, с. 408—24. См. также лит. при ст. Реактология.

В. И. Максименко.

Реакция (действие)

Реа'кция (от pe... и лат. actio — действие),

1) действие, состояние, процесс, возникающие в ответ на какое-либо воздействие, раздражитель, впечатление (например, реакция в психологии, реакции химические,ядерные реакции).

2) Экспериментальное исследование путём химического, физического или биологического воздействия, создания определённых условий (например, Реакция оседания эритроцитов).

Реакция излучения

Реа'кция излуче'ния, радиационное трение, торможение излучением, сила, действующая на электрон (или др. заряженную частицу) со стороны вызванного им поля электромагнитного излучения.

Всякое движение заряда с ускорением приводит к излучению электромагнитных волн. Поэтому система движущихся с ускорением зарядов не является замкнутой: в ней не сохраняются энергия и импульс. Такая система ведёт себя как механическая система при наличии сил трения (диссипативная система), которые вводятся для описания факта несохранения энергии в системе вследствие её взаимодействия со средой. Совершенно так же передачу энергии (и импульса) заряженной частицей электромагнитному полю излучения можно описать как «лучистое трение». Зная теряемую в единицу времени энергию (т. е. интенсивность излучения; см. Излучение), можно определить силу трения. Для электрона, движущегося в ограниченной области пространства со средней скоростью, малой по сравнению со скоростью света с, сила трения выражается формулой, полученной впервые Х. Лоренцем:

,

где а — ускорение электрона. Р. и. приводит к затуханию колебаний заряда, что проявляется в уширении спектральной линии излучения (т. н. естественная ширина линии).

Р. и. представляет собой часть силы, действующей на заряд со стороны созданного им самим электромагнитного поля («самодействие»). Необходимость её учёта приводит к принципиальным трудностям, тесно связанным с проблемой структуры электрона, природы его массы и др. (см. Квантовая теория поля).

При строгой постановке задачи следует рассматривать динамическую систему из зарядов и электромагнитного поля, которая описывается двумя системами уравнений: уравнениями движения частиц в поле и уравнениями поля, определяемого расположением и движением заряженных частиц. Однако практически имеет смысл лишь приближённая постановка задачи: методом последовательных приближений. Например, сначала находится движение электрона в заданном поле (т. е. без учёта собственного поля), затем — поле заряда по его заданному движению и далее, в качестве поправки, — влияние этого поля на движение заряда, т. е. Р. и. Такой метод даёт хорошие результаты для излучения с длиной волны l >> r0 = е2/mc2 (где m — масса, r » 2x10– 13см— «классический радиус» электрона). Реально уже при длине волны порядка комптоновской длины волныэлектрона h/mc (h — постоянная Планка), l ~ 10– 10см, необходимо учитывать квантовые эффекты. Поэтому приближённый метод учёта Р. и. справедлив во всей области применимости классической электродинамики.

Квантовая электродинамика в принципиальном отношении сохранила тот же подход к проблеме, основанный на методе последовательного приближении (т. н. методе теории возмущений). Но её методы позволяют учесть Р. и., т. е. действие на электрон собственного поля, практически с любой степенью точности причём не только «диссипативную» часть Р. и. (обусловливающую уширение спектральных линий), но и «потенциальную» часть, т. е. эффективное изменение внешнего поля, в котором движется электрон. Это проявляется в изменении энергетических уровней и эффективных сечений процессов столкновений (см. Сдвиг уровней,Радиационные поправки).

Поделиться:
Популярные книги

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Секси дед или Ищу свою бабулю

Юнина Наталья
Любовные романы:
современные любовные романы
7.33
рейтинг книги
Секси дед или Ищу свою бабулю

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Ваше Сиятельство 4т

Моури Эрли
4. Ваше Сиятельство
Любовные романы:
эро литература
5.00
рейтинг книги
Ваше Сиятельство 4т

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5