Большая Советская Энциклопедия (РЕ)
Шрифт:
Оператор минимизации сопоставляет функции f от n переменных функцию h от n переменных такую, что для любых натуральных чисел x1, .., xn
h(x1, .., xn) @ f(x1, .., xn-1, y)
где у таково, что f(x1, .., xn-1, y– 1)
Важную роль в теории Р. ф. играют т. н. примитивно рекурсивные функции — Р. ф., получающиеся из исходных функций в результате конечного числа применений одних лишь операторов подстановки и примитивной рекурсии. Они образуют собственную часть класса общерекурсивных функций. В силу известной теоремы Клини о нормальной форме Р. ф. могут быть указаны такие конкретные примитивно рекурсивные функции U от одной переменной и Tn от n + 2 переменных, что для любой Р. ф. j от n переменных и для любых натуральных чисел x1, . . ., xn имеет место равенство j(x1, ..., xn) @ U(y), где у есть наименьшее из чисел z таких, что Tn(j, x1, ..., xn,z) = 0 (здесь j представляет собой т. н. геделев номер функции j — число, которое эффективно строится по системе равенств, задающей функцию j). Из этой теоремы, в частности, вытекает, что для Р. ф. от п переменных может быть построена универсальная Р. ф. от n+1 переменных, т. е. такая Р. ф. Фn, что для любой Р. ф. j от n переменных и для любых натуральных чисел x1, . . ., xn имеет место условное равенство
j( x1, . . ., xn) @ Фn(
Это — один из центральных результатов общей теории Р. ф.
Теория Р. ф., являясь частью алгоритмов теории, представляет собой разветвленную математическую дисциплину с собственной проблематикой и с приложениями в др. разделах математики. Понятие «Р. ф.» может быть положено в основу конструктивного определения исходных математических понятий. Широкое применение теория Р. ф. нашла в математической логике. В частности, понятие примитивно рекурсивной функции лежит в основе первоначального доказательства знаменитой теоремы Гёделя о неполноте формальной арифметики, а понятие «Р. ф.» в его полном объёме было использовано С. К. Клини для интерпретации интуиционистской арифметики (исследование это составило целую эпоху в области семантики). Аппарат теории Р. ф. используется также в теории вычислительных машин и программирования.
Исследования показали, что все известные уточнения общего понятия алгоритма, в том числе Р. ф., взаимно моделируют друг друга и, следовательно, ведут к одному и тому же понятию вычислимой функции. Это обстоятельство служит серьёзным доводом в пользу тезиса Чёрча.
Лит.: Клини С. К., Введение в математику. пер. с англ., М., 1957; Успенский В. А., Лекции о вычислимых функциях, М., 1960; Мальцев А. И., Алгоритмы и рекурсивные функции, М., 1965; Роджерс Х., Теория рекурсивных функций и эффективная вычислимость, пер. с англ., М., 1972.
Н. М. Нагорный.
Релаксанты
Релакса'нты (от лат. relaxo — уменьшаю, ослабляю), миорелаксанты, вещества, уменьшающие тонус скелетной мускулатуры, что проявляется снижением двигательной активности вплоть до полного обездвижения. В зависимости от механизма действия Р. подразделяют на курареподобные средства, нарушающие передачу возбуждения через нервно-мышечный синапс, т. е. с двигательных нервов на мышцу (такие Р. используют в анестезиологии для полного расслабления мускулатуры), и вещества центрального действия, влияющие на центральные нервные образования, участвующие в регуляции мышечного тонуса. Р. центрального действия (мепротан, мидокалм и др.) применяют в неврологической практике при спинномозговых и церебральных спастических параличах,паркинсонизме и т. д. См. также Кураре,Курарины,Нейролептические средства,Релаксация.
Релаксации время
Релакса'ции вре'мя, время установления полного или частичного термодинамического равновесия в системе. См. Релаксация.
Релаксационные колебания
Релаксацио'нные колеба'ния, автоколебания, возникающие в системах, в которых существенную роль играют диссипативные силы: внешнее или внутреннее трение — в механических системах, активное сопротивление — в электрических. Рассеяние энергии, обусловленное этими силами, приводит к тому, что энергия, накопленная в одном из двух (или более) накопителей, входящих в состав автоколебательной системы, не переходит полностью к другому накопителю (как в системах, совершающих гармонические колебания), а рассеивается в системе, превращаясь в тепло. Р. к., как и всякие автоколебания, могут происходить только в нелинейных системах, поэтому рассмотрение Р. к. требует применения нелинейной теории колебаний. Релаксационные автоколебательной системы характерны тем, что при отключении источника энергии в них невозможны колебательные движения. Если в системе преимущественное значение имеет один из энергоёмких параметров (например, ёмкость при пренебрежимо малой индуктивности или упругость при пренебрежимо малой массе), то каждый период Р. к. может быть разделён на несколько резко разграниченных этапов, соответствующих медленным и быстрым изменениям состояния системы, в которой происходят Р. к., что позволяет рассматривать Р. к. в подобных вырожденных системах как разрывные колебания.
Простейшим примером механической системы, создающей Р. к., может служить колодка К, насаженная с трением на вращающийся вал В и укрепленная при помощи пружин (рис. 1). При вращении вала колодка вследствие трения увлекается валом до тех пор, пока момент упругих сил пружин не станет равным максимально возможному моменту сил трения. Тогда колодка начинает скользить по валу в обратном направлении, при этом относительная скорость колодки и вала увеличивается, сила трения падает, и колодка возвращается обратно. Но при приближении колодки к положению равновесия упругая сила пружины уменьшается, вал снова захватывает колодку и увлекает её за собой, дальше процесс повторяется (рис. 2).
С механическими Р. к. приходится встречаться в различных механизмах (например, тормозные колодки), в которых трение достаточно велико и вместе с тем величина трения падает (по крайней мере в некоторой области) при увеличении относительной скорости движения поверхностей, между которыми возникают силы трения.
Простейший пример электрических Р. к. — колебания, возникающие при определённых условиях в схеме с газоразрядной лампой (рис. 3), которая обладает свойством зажигаться при некотором напряжении U3 и гаснуть при более низком напряжении Um. В этой схеме периодически осуществляется зарядка конденсатора С от источника тока Е через сопротивление R до напряжения зажигания лампы, после чего лампа зажигается, и конденсатор быстро разряжается через лампу до напряжения гашения лампы. В этот момент лампа гаснет и процесс начинается вновь. В течение каждого периода этих Р. к. происходит два медленных изменения силы тока I при заряде и разряде конденсатора и два быстрых — скачкообразных — изменения тока /c, когда лампа зажигается и гаснет (рис. 4).
Упрощённое рассмотрение механизма возникновения Р. к. основано на пренебрежении параметрами системы, влияющими на характер быстрых движений. Методы нелинейной теории колебаний позволяют исследовать не только медленные, но и быстрые движения, не пренебрегая параметрами, от которых характер быстрых движений существенно зависит, и не прибегая к специальным постулатам о характере быстрых движений. В зависимости от свойств системы возможно большое разнообразие форм релаксационных автоколебаний от близких к гармоническим до скачкообразных и импульсных.