Большая Советская Энциклопедия (УЛ)
Шрифт:
Ультраосновные горные породы
Ультраосновны'е го'рные поро'ды, ультрабазиты, гипербазиты, горные породы, сложенные главным образом магнезиально-железистыми силикатами — оливином и пироксеном — с небольшой примесью второстепенных минералов (хромита, магнезита и др.). В химическом отношении У. г. п. относительно бедны SiO2 (менее 45%) и богаты Mg (более 42% MgO). Среди У. г. п. выделяют большое число различных типов, в том числе наиболее важные — дуниты и оливиниты (в которых вместо хлорита присутствует магнетит), перидотиты и пироксениты . Для У. г. п. характерен полный или частичный переход оливина и пироксена в серпентиновые минералы (хризотил, антигорит, лизардит) с образованием серпентинитов .
Условия образования У. г. п. окончательно не выяснены. Большинство геологов-тектонистов (А. В. Пейве, А. Л. Книппер, В. Г. Казьмин и др.) считает У. г. п. тектоническими отторженцами пород, слагающих верхнюю мантию Земли, тогда как многие петрографы (в частности, В. Н. Лодочников, американские учёные Х. Тейлор и П. Уилли) продолжают развивать представления о магматическом генезисе У. г. п.
С У. г. п. связаны месторождения многих видов полезных ископаемых (месторождения платиновых, хромитовых, силикатных, никелевых и легированных железных руд, асбеста, нефрита и др.). См. также Магматические горные породы .
Лит.: Пейве А. В., Океаническая кора геологического прошлого, «Геотектоника», 1969. № 4; Wyllie P. J., The origin of the ultramafic and ultrabasic rocks, «Tectonophysics», 1969, v. 7, № 5—6.
В. П. Петров.
Ультрасферические многочлены
Ультрасфери'ческие многочле'ны, многочлены Гегенбауэра, специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... У. м. Pnl (х ) степени n являются коэффициентами при an в разложении в степенной ряд функции
У. м. ортогональны (см. Ортогональные многочлены ) на отрезке [—1; + 1] относительно веса
Ультратом
Ультрато'м, то же, что ультрамикротом .
Ультрафильтрация
Ультрафильтра'ция (от ультра... и фильтрация ), продавливание жидкости через полупроницаемую мембрану — проницаемую для малых молекул и ионов, но непроницаемую для макромолекул и коллоидных частиц. У. растворов, содержащих молекулы высокомолекулярных соединений, в отличие от У. золей , иногда называют молекулярной фильтрацией. У. можно рассматривать как диализ под давлением или как обратный осмос , если мембрана пропускает только молекулы растворителя. В последнем случае процесс часто называют гиперфильтрацией; при его осуществлении внешнее давление должно превышать осмотическое давление раствора.
Мембраны для ультрафильтров, обычно в виде пластин (листов) или цилиндрических патронов («свечей»), изготавливают из микропористых неорганических материалов, продуктов животного происхождения, но чаще из искусственных и синтетических полимеров (эфиров целлюлозы, полиамидов и др.). Максимальный размер проходящих через мембрану частиц (молекул) лежит в пределах от нескольких мкм до сотых долей мкм. Разделяющая способность (селективность) мембран зависит от их структуры и физико-химических свойств, а также от давления, температуры, состава фильтруемой жидкости и прочих внешних факторов.
У. как метод концентрирования, очистки и фракционирования высокодисперсных систем и многокомпонентных растворов широко применяется в лабораторной практике, медицине, промышленности. Так, посредством У. очищают от ионных и не ионных примесей воду, органические растворители, жидкие топлива и масла; разделяют сложные смеси белков, алкалоидов и др. веществ; выделяют ферменты, витамины, вирусы; стерилизуют жидкости медицинского и фармацевтического назначения. У. используют в дисперсионном анализе , микробиологическом анализе, при анализе загрязнений воздушных бассейнов и природных водоёмов промышленными и бытовыми отходами.
Лит.: Дытнерский Ю. И., Мембранные процессы разделения жидких смесей, М., 1975.
Л. А. Шиц.
Ультрафиолетовая микроскопия
Ультрафиоле'товая микроскопи'я, метод микроскопического исследования в ультрафиолетовых лучах. Подробнее см. в ст. Микроскоп .
Ультрафиолетовая спектроскопия
Ультрафиоле'товая спектроскопи'я, УФ-спектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в УФ-области спектра от 400 нм до 10 нм. Исследованием спектров в области 200—10 нм занимается вакуумная спектроскопия (см. Ультрафиолетовое излучение ). В области спектра 400—200 нм используют приборы, построенные по тем же оптическим схемам, что и для видимой области спектра; отличие состоит лишь в замене стеклянных призм, линз и др. оптических деталей на кварцевые. При измерении интенсивности УФ-излучения в качестве эталонных применяют источники, имеющие в УФ-области спектра известное распределение спектральной яркости (ленточная вольфрамовая лампа, угольная дуга, а также синхротронное излучение ); стандартными приёмниками в этой области спектра являются термопара и градуированные фотоэлементы.
У. с. применяется при исследовании атомов, ионов, молекул и твёрдых тел для изучения их уровней энергии, вероятностей переходов и др. характеристик. В УФ-области спектра лежат резонансные линии нейтральных, одно- и двукратно ионизованных атомов, а также спектральные линии, испускаемые возбуждёнными конфигурациями высокоионизованных атомов. Электронно-колебательно-вращательные полосы молекул в основном также располагаются в ближней УФ-области спектра. Здесь же сосредоточены полосы поглощения в спектрах большинства полупроводников, возникающие при прямых переходах из валентной зоны в зону проводимости. Многие химические соединения дают сильные полосы поглощения в УФ-области, что создаёт преимущества использования У. с. в спектральном анализе. У. с. имеет большое значение для внеатмосферной астрофизики при изучении Солнца, звёзд, туманностей и др.
Лит.: Taffе' Н. Н., Orehin М., Theory and applications of ultraviolet spectroscopy, N. Y., [1962]. см. также лит. при ст. Ультрафиолетовое излучение .
А. Н. Рябцев.
Ультрафиолетовое излучение
Ультрафиоле'товое излуче'ние (от ультра... и фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн l 400—10 нм. Вся область У. и. условно делится на ближнюю (400—200 нм ) и далёкую, или вакуумную (200—10 нм ); последнее название обусловлено тем, что У. и. этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.
Ближнее У. и. открыто в 1801 немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное У. и. обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885—1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал У. и. с длиной волны до 25 нм (1924). К 1927 был изучен весь промежуток между вакуумным У. и. и рентгеновским излучением.