Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия
Шрифт:

Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей. Эти группы называются группами 1-го рода. Группы, содержащие отражения, или инверсионные повороты, описывают кристаллы, в которых есть зеркально равные части (но могут быть и совместимо равные части). Эти группы называются группами 2-го рода. Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах, условно называемых «правой» и «левой», каждая из них не содержит элементов симметрии 2-го рода, но они зеркально равны друг другу (см. Энантиоморфизм, Кварц).

Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещенная в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Например, для описания регулярной структуры сферических вирусов (рис. 4), в оболочках которых соблюдаются кристаллографические принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.

Симметрия физических свойств. Предельные группы. В отношении макроскопических физических свойств (оптических, электрических, механических и др.), кристаллы ведут себя как однородная анизотропная среда, т. е. дискретность их атомной структуры не проявляется. Однородность означает, что свойства одинаковы в любой точке кристалла, однако при этом многие свойства зависят от направления (см. Анизотропия). Зависимость от направления можно представить в виде функции и построить указательную поверхность данного свойства (рис. 5, см. также ст. Кристаллооптика). Эта функция, которая может быть различной для разных физических свойств кристалла (векторной или тензорной) имеет определённую точечную симметрию, однозначно связанную

с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше её по симметрии (принцип Неймана).

Многие из свойств кристаллов, принадлежащих к определённым классам, описываются предельными точечными группами, содержащими оси симметрии бесконечного порядка, обозначаемые yen. Наличие оси yen означает, что объект совмещается с собой при повороте на любой, в том числе бесконечно малый угол. Таких групп 7, они представлены на рис. 6 образцовыми фигурами и соответствующими символами. Т. о., всего имеется 32 + 7 = 39 точечных групп, описывающих симметрию свойств кристаллов. Зная группу С. к., можно указать возможность наличия или отсутствия в нём некоторых физических свойств (см. Кристаллы, Кристаллофизика).

Обозначения и названия 32 групп точечной симметрии

Сингония Обозначения Название Соотношение констант элементарной ячейки
международные по Шенфлису
Триклинная С1 Моноэдрическая а ¹ b ¹ с
С1 Пинакоидальная a ¹ b ¹ g ¹ 90°
Моноклинная 2С2 Диэдрическая осевая а ¹ b ¹ с
mCs Диэдрическая безосная a = g = 90°
2/mC2h Призматическая b ¹ 90°
Ромбическая 222D2 Ромбо-тетраэдрическая а ¹ b ¹ с
mmC2u Ромбо-пирамидальная
mmmD2h Ромбо-дипирамидальная a = b = g = 90°
Тетрагональная 4C4 Тетрагонально-пирамидальная а = b ¹ с a = b = g = 90°
422D4 Тетрагонально-трапецоэдрическая
4/mC4h Тетрагонально-дипирамидальная
4mmC4u Дитетрагонально-пирамидальная
4/mmmD4h Дитетрагонально-дипирамидальная
S4 Тетрагонально-тетраэдрическая
D2d Тетрагонально-скаленоэдрическая
Тригональная 3C3 Тригонально-пирамидальная а = b = с a = b = g ¹ 90°
32D3 Тригонально-трапецоэдрическая
3mC3u Дитригонально-пирамидальная
C3i Ромбоэдрическая
D3d Дитригонально-скаленоэдрическая
C3h Тригонально-дипирамидальная
Гексагональная
D3h Дитригонально-дипирамидальная а = b ¹ с a = b = 90° g = 120°
6C6 Гексагонально-пирамидальная
62D6 Гексагонально-трапецоэдрическая
6/mC6h Гексагонально-дипирамидальная
6mmC6u Дигексагонально-пирамидальная
6/mmmD6h
Дигексагонально-дипирамидальная
Кубическая 23T Тритетраэдрическая а = b = с a = b = g = 90°
m3Th Дидодекаэдрическая
Td Гексатетраэдрическая
43O Триоктаэдрическая
m3mOh Гексоктаэдрическая

Пространственная симметрия атомной структуры кристаллов (кристаллической решётки) описывается пространственными группами симметрии

. Характерными для решётки операциями являются три некомпланарных переноса а, b, с, называемых трансляциями, которые задают трёхмерную периодичность атомной структуры кристаллов. Сдвиг (перенос) структуры на векторы a1, b2, c3 или любой вектор t = p1a1 + p2b2 + p3c3, где p1, p2, p3 — любые целые положительные или отрицательные числа, совмещает структуру кристалла с собой, и следовательно, является операцией симметрии, удовлетворяющей условиям (1, а, б). Параллелепипед, построенный на векторах а, b и c, называется параллелепипедом повторяемости или элементарной ячейкой кристалла (рис. 7, а, б). В элементарной ячейке содержится некоторая минимальная группировка атомов, «размножение» которой операциями симметрии, в том числе трансляциями, образует кристаллическую решётку. Элементарная ячейка и размещение в ней атомов устанавливается методами рентгеновского структурного анализа, электронографии или нейтронографии.

Вследствие возможности комбинирования в решётке трансляций и операций точечной симметрии в группах G33 возникают операции и соответствующие им элементы симметрии с трансляционной компонентой — винтовые оси различных порядков и плоскости скользящего отражения (рис. 2, д).

Всего известно 230 пространственных (фёдоровских) групп симметрии

, и любой кристалл относится к одной из этих групп. Трансляционные компоненты элементов микросимметрии макроскопически не проявляются, например винтовая ось в огранке кристаллов проявляется как соответствующая по порядку простая поворотная ось. Поэтому каждая из 230 групп
 макроскопически сходственна с одной из 32 точечных групп. Например, точечной группе mmm или D2h сходственны 28 пространственных групп. Совокупность переносов, присущих данной пространственной группе, есть её трансляционная подгруппа, или Браве решётка; таких решёток существует 14.

Симметрия слоев и цепей. Для описания плоских или вытянутых в одном направлении фрагментов структуры кристаллов могут быть использованы группы

 — двумерно периодические и
 — одномерно периодические в трёхмерном пространстве. Эти группы играют важную роль в изучении биологических структур и молекул. Например, группы
 описывают строение биологических мембран, группы
 — цепных молекул (рис. 8, а) палочкообразных вирусов, трубчатых кристаллов глобулярных белков (рис. 8, б), в которых молекулы уложены согласно спиральной (винтовой) симметрии, возможной в группах
.

Обобщённая симметрия. В основе определения симметрии лежит понятие равенства (1, б) при преобразовании (1, а). Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в кристалле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нём магнитных моментов (рис. 9), то «обычной», классической симметрии уже недостаточно. К подобного рода обобщениям симметрии относится антисимметрия и цветная симметрия. В антисимметрии в дополнение к трём пространственным переменным x1, x2, x3 вводится добавочная, 4-я переменная x4 = ± 1. Это можно истолковать таким образом, что при преобразовании (1, а) функция F может быть не только равна себе, как в (1, б), но и изменить знак. Условно такую операцию можно изобразить изменением цвета (рис. 10). Существует 58 групп точечной антисимметрии

 и 1651 пространственная группа антисимметрии
 (шубниковских групп). Если добавочная переменная приобретает не два значения, а несколько (возможны числа 3, 4, 6, 8,..., 48), то возникает «цветная» симметрия Белова. Так, известна 81 точечная группа G3, ц . Основные приложения обобщённой симметрии в кристаллографии — описание магнитных структур.

Др. обобщения симметрии: симметрия подобия, когда равенство частей фигуры заменяется их подобием (рис. 11), криволинейная симметрия, статистическая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твёрдых растворов, жидких кристаллов, и др.

Лит.: Шубников А. В., Копцик В. А., Симметрия в науке и искусстве, 2 изд., М., 1972; Вейль Г., Симметрия, пер. с англ., М., 1968; Федоров Е. С.. Симметрия и структура кристаллов, [М.], 1949; Шубников А. В., Симметрия и антисимметрия конечных фигур, М., 1951.

Б. К. Вайнштейн.

Рис. 3. Примеры кристаллов, принадлежащих к разным точечным группам или кристаллографическим классам: а — к классу m (одна плоскость симметрии); б — к классу с (один центр симметрии); в — к классу 2 (одна ось симметрии 2-го порядка); г — к классу 6 (одна зеркальная ось 6-го порядка).

Рис. 8. Объекты со спиральной симметрией: а — молекула ДНК; б — трубчатый кристалл белка фосфорилазы (электронномикроскопический снимок, увеличено).

Поделиться:
Популярные книги

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Вопреки судьбе, или В другой мир за счастьем

Цвик Катерина Александровна
Любовные романы:
любовно-фантастические романы
6.46
рейтинг книги
Вопреки судьбе, или В другой мир за счастьем

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3