Большая Советская Энциклопедия
Шрифт:
Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей. Эти группы называются группами 1-го рода. Группы, содержащие отражения, или инверсионные повороты, описывают кристаллы, в которых есть зеркально равные части (но могут быть и совместимо равные части). Эти группы называются группами 2-го рода. Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах, условно называемых «правой» и «левой», каждая из них не содержит элементов симметрии 2-го рода, но они зеркально равны друг другу (см. Энантиоморфизм, Кварц).
Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещенная в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Например, для описания регулярной структуры сферических вирусов (рис. 4), в оболочках которых соблюдаются кристаллографические принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.
Симметрия физических свойств. Предельные группы. В отношении макроскопических физических свойств (оптических, электрических, механических и др.), кристаллы ведут себя как однородная анизотропная среда, т. е. дискретность их атомной структуры не проявляется. Однородность означает, что свойства одинаковы в любой точке кристалла, однако при этом многие свойства зависят от направления (см. Анизотропия). Зависимость от направления можно представить в виде функции и построить указательную поверхность данного свойства (рис. 5, см. также ст. Кристаллооптика). Эта функция, которая может быть различной для разных физических свойств кристалла (векторной или тензорной) имеет определённую точечную симметрию, однозначно связанную
Многие из свойств кристаллов, принадлежащих к определённым классам, описываются предельными точечными группами, содержащими оси симметрии бесконечного порядка, обозначаемые yen. Наличие оси yen означает, что объект совмещается с собой при повороте на любой, в том числе бесконечно малый угол. Таких групп 7, они представлены на рис. 6 образцовыми фигурами и соответствующими символами. Т. о., всего имеется 32 + 7 = 39 точечных групп, описывающих симметрию свойств кристаллов. Зная группу С. к., можно указать возможность наличия или отсутствия в нём некоторых физических свойств (см. Кристаллы, Кристаллофизика).
Обозначения и названия 32 групп точечной симметрии
Сингония | Обозначения | Название | Соотношение констант эле– ментарной ячейки | |
международные | по Шенфлису | |||
Триклинная | С1 | Моноэдрическая | а ¹ b ¹ с | |
С1 | Пинакоидальная | a ¹ b ¹ g ¹ 90° | ||
Моноклинная | 2 | С2 | Диэдрическая осевая | а ¹ b ¹ с |
m | Cs | Диэдрическая безосная | a = g = 90° | |
2/m | C2h | Призматическая | b ¹ 90° | |
Ромбическая | 222 | D2 | Ромбо-тетраэдрическая | а ¹ b ¹ с |
mm | C2u | Ромбо-пирамидальная | ||
mmm | D2h | Ромбо-дипирамидальная | a = b = g = 90° | |
Тетрагональная | 4 | C4 | Тетрагонально-пирамидальная | а = b ¹ с a = b = g = 90° |
422 | D4 | Тетрагонально-трапецоэдрическая | ||
4/m | C4h | Тетрагонально-дипирамидальная | ||
4mm | C4u | Дитетрагонально-пирамидальная | ||
4/mmm | D4h | Дитетрагонально-дипирамидальная | ||
S4 | Тетрагонально-тетраэдрическая | |||
D2d | Тетрагонально-скаленоэдрическая | |||
Тригональная | 3 | C3 | Тригонально-пирамидальная | а = b = с a = b = g ¹ 90° |
32 | D3 | Тригонально-трапецоэдрическая | ||
3m | C3u | Дитригонально-пирамидальная | ||
C3i | Ромбоэдрическая | |||
D3d | Дитригонально-скаленоэдрическая | |||
C3h | Тригонально-дипирамидальная | |||
Гексагональная | D3h | Дитригонально-дипирамидальная | а = b ¹ с a = b = 90° g = 120° | |
6 | C6 | Гексагонально-пирамидальная | ||
62 | D6 | Гексагонально-трапецоэдрическая | ||
6/m | C6h | Гексагонально-дипирамидальная | ||
6mm | C6u | Дигексагонально-пирамидальная | ||
6/mmm | D6h |
| ||
Кубическая | 23 | T | Тритетраэдрическая | а = b = с a = b = g = 90° |
m3 | Th | Дидодекаэдрическая | ||
Td | Гексатетраэдрическая | |||
43 | O | Триоктаэдрическая | ||
m3m | Oh | Гексоктаэдрическая |
Пространственная симметрия атомной структуры кристаллов (кристаллической решётки) описывается пространственными группами симметрии
Вследствие возможности комбинирования в решётке трансляций и операций точечной симметрии в группах G33 возникают операции и соответствующие им элементы симметрии с трансляционной компонентой — винтовые оси различных порядков и плоскости скользящего отражения (рис. 2, д).
Всего известно 230 пространственных (фёдоровских) групп симметрии
Симметрия слоев и цепей. Для описания плоских или вытянутых в одном направлении фрагментов структуры кристаллов могут быть использованы группы
Обобщённая симметрия. В основе определения симметрии лежит понятие равенства (1, б) при преобразовании (1, а). Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в кристалле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нём магнитных моментов (рис. 9), то «обычной», классической симметрии уже недостаточно. К подобного рода обобщениям симметрии относится антисимметрия и цветная симметрия. В антисимметрии в дополнение к трём пространственным переменным x1, x2, x3 вводится добавочная, 4-я переменная x4 = ± 1. Это можно истолковать таким образом, что при преобразовании (1, а) функция F может быть не только равна себе, как в (1, б), но и изменить знак. Условно такую операцию можно изобразить изменением цвета (рис. 10). Существует 58 групп точечной антисимметрии
Др. обобщения симметрии: симметрия подобия, когда равенство частей фигуры заменяется их подобием (рис. 11), криволинейная симметрия, статистическая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твёрдых растворов, жидких кристаллов, и др.
Лит.: Шубников А. В., Копцик В. А., Симметрия в науке и искусстве, 2 изд., М., 1972; Вейль Г., Симметрия, пер. с англ., М., 1968; Федоров Е. С.. Симметрия и структура кристаллов, [М.], 1949; Шубников А. В., Симметрия и антисимметрия конечных фигур, М., 1951.
Б. К. Вайнштейн.
Рис. 3. Примеры кристаллов, принадлежащих к разным точечным группам или кристаллографическим классам: а — к классу m (одна плоскость симметрии); б — к классу с (один центр симметрии); в — к классу 2 (одна ось симметрии 2-го порядка); г — к классу 6 (одна зеркальная ось 6-го порядка).
Рис. 8. Объекты со спиральной симметрией: а — молекула ДНК; б — трубчатый кристалл белка фосфорилазы (электронномикроскопический снимок, увеличено).