Больше, чем вы знаете. Необычный взгляд на мир финансов
Шрифт:
Возможность с небольшими затратами решать специфические исследовательские проблемы приобретает все более важное значение в нашей экономике знаний. Возьмем, к примеру, фармацевтическую отрасль. За последние 20 лет инвестиции в исследования и разработку почти удвоились в процентном отношении от объема продаж. Сегодня создание нового лекарства, от разработки до сертификации в FDA (Управлении по контролю за пищевыми продуктами и лекарственными средствами) и запуска в производство, обходится примерно в $800 млн.
Между тем наукоемкие компании сталкиваются с усложняющейся год от года ситуацией, связанной с поиском специалистов для решения трудных исследовательских проблем. Давайте предположим, что у фармацевтической
В середине 2001 г. руководители ведущей инновационной компании Eli Lilly захотели получить ответ на эти вопросы и запустили новый проект Innocentive (www.innocentive.com). В 2006 г. в Innocentive было зарегистрировано около 40 компаний-заказчиков и 95 000 ученых-исследователей. Заплатив членский взнос, компании-заказчики размещают на сайте описание интересующих их научных проблем и указывают денежное вознаграждение за их решение. Проект собирает ученых со всего мира – половина из них живет за пределами Соединенных Штатов.
Насколько успешно работает Innocentive? Делать выводы пока рано, но первые результаты воодушевляют. Возьмем, например, Procter & Gamble, чей бюджет расходов на исследования и разработку в 2002 г. составил $1,7 млрд, а исследовательской деятельностью занимаются порядка 9500 сотрудников, в том числе 1200 докторов наук. Глава департамента НИОКР Ларри Хастон объясняет, что компания использует Innocentive, потому что «существуют трудные проблемы, с которыми мы не можем справиться своими силами». Из первой группы предложенных проблем научное сообщество Innocentive помогло P&G успешно решить почти 45 %, хотя компания изначально рассчитывала не более чем на треть.
Успех P&G подчеркивает, сколь важно разнообразие исследователей. Вот что говорит Хастон: «Наша первая проблема была решена юристом из Северной Каролины, который специализируется на патентном праве, а по ночам занимается химическими исследованиями в домашней лаборатории, пока его жена читает любовные романы. Со второй проблемой нам помог аспирант из Испании, с третьей – житель Бангалора (Индия), с четвертой – химик-консультант, фрилансер»2.
Нетрудно представить массу других областей, где может оказаться полезным подобное соединение проблем с теми, кто может найти их решение. Несмотря на существование ряда серьезных вопросов, в частности связанных с правами на интеллектуальную собственность и опасностью распространения инсайдерской или конкурентной информации, модель Innocentive значительно упростила поиск иголки решения в стоге идей3.
Глас народа и быки
Создание рынка из коллектива – еще один действенный способ агрегирования информации и решения проблем. В этом случае, вместо того чтобы соотносить проблему с конкретными людьми, способными ее решить, группа решает проблему сама – и делает это лучше, чем любой отдельно взятый индивид, даже эксперт.
Эрудит викторианской эпохи Фрэнсис Гальтон был одним из первых, кто задокументировал указанную способность группы к агрегированию информации. В статье «Глас народа», опубликованной в журнале Nature в 1907 г., Гальтон описывает соревнование по угадыванию веса быка на Выставке откормленного скота и птицы в Плимуте. В состязании участвовали 787 человек, каждый из которых должен был купить шестипенсовый билет и указать в нем свое имя, адрес и прогноз. (Простая мера, чтобы отсеять явных шутников.) Публика была разношерстная – как мясники и фермеры, искушенные в оценке веса скота, так и далекие от животноводства люди. Последние, как предположил Гальтон, руководствовались «той информацией, которую смогли услышать» или «чистыми догадками».
Гальтон рассчитал усредненный прогноз группы – глас народа, а также среднее значение. Он обнаружил, что усредненный прогноз находился в пределах 0,8 % от правильного веса, а среднее значение догадок – в пределах 0,01 %. Чтобы показать, как появился этот ответ, Гальтон привел график распределения всех ответов. Проще говоря, ошибки компенсировали друг друга, и результатом стала дистиллированная информация4.
Итак, мы увидели, как глас народа раз за разом демонстрирует удивительную способность к решению проблем – нужно ли найти выход из сложного лабиринта, угадать количество горошин в банке или найти пропавшую бомбу5. Однако, чтобы это произошло, необходимо соблюдение нескольких условий: наличие механизма агрегирования информации, наличие стимулов для правильного ответа и разнородность группы.
Как использовать глас народа для оценки принтеров
В предыдущих примерах группа индивидов определяла конкретное состояние: вес быка, количество конфет в банке, местонахождение бомбы, – но не делала прогнозов о будущем состоянии. Есть ли различие между оценкой того, что есть, и оценкой того, что будет?
Масса убедительных данных свидетельствует о том, что глас народа довольно силен в прогнозировании будущего. Например, исследователи из компании Hewlett-Packard обнаружили, что даже небольшие группы могут прогнозировать результаты лучше, чем отдельные люди. Внутренний рынок, созданный специалистами в Hewlett-Packard, дал более точные прогнозы по будущим объемам продаж, чем официальные корпоративные эксперты6.
А как насчет фондового рынка?
Итак, коллективы показали себя способными соединять искателей и исследователей, определять текущее и будущее состояние. Но как все это применимо к фондовому рынку?
Фондовый рынок отличается от вышеописанных рынков тем, что там нет ответа – у акций нет строго установленного временного горизонта или стоимости. (За исключением тех случаев, когда компания соглашается на приобретение и цена акций, как правило, очень точно отражает конечную стоимость.) В результате инвесторы склонны к подражанию, потому что могут заработать прибыль, продав бумаги тому, кто готов заплатить за них более высокую цену. Другими словами, на фондовом рынке часто нарушается одно из трех условий эффективного сбора информации – разнородность группы.
Однако я бы решился утверждать, что для толпы заблуждения и безумства являются скорее исключением, чем правилом. Понимание того, каким образом и почему рынки являются эффективными, помогает инвесторам лучше понять, каким образом и почему рынки иногда становятся неэффективными, и лучше справляться с такими ситуациями. Кроме того, инвесторы, способные распознавать компании, где умело используют коллективное суждение – глас народа, получают для себя важное преимущество.
Глава 31
Миром правят толстые хвосты
Толстые хвосты и инвестирование
[Виктор Нидерхоффер] рассматривал рынки как казино, где люди действуют подобно игрокам, а их поведение может быть понято путем наблюдения за игроками. Он регулярно зарабатывал небольшие суммы, действуя на основе этой теории. Однако в его подходе заключалась и ошибка. Если на рынке возникал… прилив… он мог серьезно пострадать, поскольку не обладал надежным механизмом защиты от ошибок.