Большой теннис. Успех и спортивное долголетие
Шрифт:
• Вариант 3). Сила нагрузки та же, но для её уравновешивания используется проксимальный рычага действия. В этой рычажной конструкции форма рычага угловая. В точке 1.2 прикладывается сила к проксимальному рычагу действия Fпрд. Плечо этой силы равно расстоянию между точками 0–1.2. Создаётся момент силы Fпрд для уравновешивания момента силы нагрузки Fн.
Сделаем кое-какие выводы:
1. По роду действия рычажные конструкции классифицируются как на 1-го и 2-го рода.
2. По форме они могут быть прямолинейными и угловыми.
3. Рычаги ССЧ могут быть проксимального и дистального действия.
4. При нарушении условий равновесия рычажной конструкции движение рычага пойдёт в
Если начинается движение рычага, то для описания его перемещения уже нужны кинематические характеристики… Вспоминаем, если какой-то предмет вращается, то чем дальше точка расположена от центра вращения, тем её скорость выше. Пока нас не очень интересует, какая это скорость и как она вычисляется, важен принцип действия рычажной конструкции, которая может трансформировать величину перемещения и скорости также, как преобразует (трансформирует) силу.
Переход от условий равновесия рычага к его кинематическим характеристикам описывает “Золотое правило механики”. Оно гласит, что если при использовании рычага получаем выигрыш в силе, то проигрываем в перемещении, если проигрываем в силе, то выигрываем в перемещении. Можно так, на коротком плече сила больше, на длинном – больше пройденное расстояние, на длинном плече сила меньше, на коротком – меньше пройденное расстояние.
Немножко перефразируем это правило применительно к скоростям движения. Поскольку разные точки рычага за одно и то же время проходят разные расстояния, то и скорости их различные. И для скорости «Золотое правило механики» будет звучать так, что если при использовании рычага получаем выигрыш в силе, то проигрываем в скорости перемещения, если проигрываем в силе, то выигрываем в скорости перемещении.
Рассмотрим рисунок 9 вариант 2) и сравним величины сил и скоростей в точках 5 и 1.2. Если прикладываем силу к дистальному рычагу действия (точка 5), то эта сила будет меньше, а скорость выше чем у точки 1.2.
Теперь вариант 3) – если прикладываем силу к проксимальному рычагу действия (точка 1.2), то эта сила будет больше, а скорость ниже чем у точки 5.
Очевидно, что к меньшему плечу рычага действия вынуждены прикладывать большую силу, а на другом плече рычага получаем большую скорость. В биомеханике такой рычаг называется скоростным. Если приложим силу к большему плечу рычага действия, то получится всё наоборот, и рычаг будет силовым, выигрыш в силе – проигрыш в скорости на другом конце рычага. Для проксимального рычага действия эта особенность рычажной конструкции звучит так: «проигрываем в силе – выигрываем в скорости». Для дистального рычага действия всё наоборот: «выигрываем в силе – проигрываем в скорости».
Понятия о скоростном и силовом двигательном рычаге какого-либо рычага (элемента) ССЧ позволяют пользоваться своими рычагами более грамотно, и что очень существенно «безаварийно».
По поводу «безаварийности», а скорее по поводу, довольно частой у теннисистов, «аварийности» в области плечевого сустава. Причиной травм может быть слишком большое желание спортсмена увеличить скорость движения рычага плеча (например, при подаче) и делается это за счёт усилий на скоростном рычаге действия. Раз, два … пятнадцать, сто пятнадцать и так далее и непосильная нагрузка даёт знать о себе болью. Аналогичная причина может быть для появления травм и в области тазобедренного сустава.
Обобщение приобретённых знаний:
1. Получили представление о моменте силы.
2. Познакомились с рычажными конструкциями и рычагами действия.
3. Установили разницу между дистальным и проксимальным рычагами действиями.
Любые движения рычагов ССЧ это лишь следствие процессов, происходящих внутри биомеханической
Глава 4. Законы и принципы биомеханики
Любая наука определяется системой законов и принципов, которые служат основой для деятельности в ней. Законы это вполне определённая причинно следственная взаимосвязь каких-то событий, процессов, взаимодействий. Нужно отметить, что законы проявляют себя вне зависимости знаешь о них или нет. Принципы в какой-либо науке это те же законы только локального значения. Они проявляются в определённых условиях.
В этой главе приобретём понятия об основных законах и принципах биомеханики, которые помогут организовывать тренировочный и производственный процесс сложной биомеханической системы под названием человек.
С какой объёмной и сложной биомеханической системой приходиться общаться спортсменам, можно представить с помощью арифметики. Достаточно вспомнить, что в человеке десятки рычагов, сотни мышц и миллиарды нервных клеток. И каждая из этого миллиарда может как-то влиять на поведение и двигательную активность. И как же организовать тренировочный, а затем и производственный процесс с учётом всех разнообразных влияний? Похоже, без нужных знаний обойтись весьма сложно! Хорошо, что до нас и для нас уже потрудились наши предшественники. Да к тому же существует такая наука как биомеханика.
Биомеханика опирается на законы:
1. Физиологии высшей нервной деятельности.
2. Организации движений.
И принципы:
1. Активации психофизиологических механизмов.
2. Соответствия выбранной деятельности.
3. Перехода к управляемым движениям.
Для лучшего понимания и усвоения курса биомеханики, в процессе обучения необходимо пользоваться определенной методикой. Прежде всего, необходимо желание понять и принять знания, преподнесенные в виде образов, конкретных задач и условий для их решения. Затем представить образ, скрывающийся за словами, которые описывают задачу и её условия. Следующий этап – сверка полученных знаний с собственными представлениями и ощущениями в этой области, корректировка существующего образа и, конечно же, практика в персональной двигательной активности. Так действовать до появления ощущений, подтверждающих реальность (адекватность) движений в соответствии с вновь созданным образом. Подобная установка позволяет “видеть” цель действий и обучаться более эффективно.
В обозначенном выше порядки рассмотрим основные законы и принципы биомеханики.
1. Законы физиологии высшей нервной деятельности.
«Трудами И. М. Сеченова, а затем и И. П. Павлова была создана новая глава физиологии – учение о рефлекторных основах психических процессов и рефлекторных законах работы коры больших полушарий. …Именно благодаря успехам современной физиологии, созданной И. П. Павловым, были заложены основы новых представлений о динамической локализации функций в коре головного мозга.
Согласно этому представлению, «функция» в только что упомянутом смысле на самом деле является функциональной системой (понятие, введенное П. К. Анохиным), направленной на осуществление известной биологической задачи и обеспечивающейся целым комплексом взаимно связанных актов, которые в итоге приводят к достижению соответствующего биологического эффекта.»