Борьба со старением, или Не все мы умрем…
Шрифт:
Как мы уже говорили, жизнь многих типов клеток коротка. Часть клеток не хочет подчиняться этому правилу и восстает против него. После ряда мутаций уже испорченная ими и не пригодная для функционирования клетка получает сигнал на самоуничтожение, но игнорирует его и продолжает жить и делиться, воспроизводя себе подобных. Более того, восставшие клетки для самообеспечения стимулируют образование собственной кровеносной системы, организуют свою систему обороны и становятся как бы самостоятельным растущим органом. Так появляется раковая опухоль. Клетки опухоли часто отрываются от нее и через кровь попадают в другие части организма, образуя там свои растущие колонии – метастазы. Это, конечно, мешает работе всего организма и ведет к его гибели.
Да, стремление к бессмертию некоторых, заметим, уже негодных клеток опасно для организма в целом. Возможно, так же обстоят дела и с человеческим обществом,
1.1.2. Как организм развивается из клетки
Как известно, все клетки (40–80 трлн клеток в зависимости от размеров самого человека) происходят, в конечном счете, от одной клетки, образовавшейся от слияния сперматозоида мужчины и яйцеклетки женщины (зигота [8] ). Это слияние может происходить как в теле женщины, так теперь и в пробирке. Это всем уже хорошо известное ЭКО, или экстракорпоральное оплодотворение, «дети в пробирке».
8
Мы будем в скобочках курсивом приводить распространенные термины и названия. Помнить их иногда может быть полезно, но необязательно.
В первые сутки включены (экспрессированы) только 7 генов. Клетка делится на две клетки (бластомеры). За вторые сутки после оплодотворения работают уже 32 гена и образуются четыре клетки, за третьи – 129 генов [9] , образуется восемь клеток (бластомеров). Все эти полученные в результате дробления исходной клетки восемь клеток одинаковы по размеру и обладают одним замечательным свойством. Из каждой из них при определенных условиях может получиться любая клетка организма (плюрипотентность). Эти клетки, называемые эмбриональными стволовыми клетками, очень ценны. Можно, например, взять любую из них, сделать с ней различные генетические манипуляции, например вставить или вырезать ген и пересадить его в матку. Из этой клетки может вырасти генетически измененный организм [10] .
9
URL: https://nauka.vesti.ru/article/1043149
10
За проведение генетических модификаций с плюрипотентными стволовыми клетками мышей и получение после этого животных с заданными генетическими свойствами была вручена Нобелевская премия 2007 года.
При дальнейших делениях образующиеся клетки уже утрачивают замечательную возможность превращаться в любой из более чем 200 типов клеток. Из все-, или плюрипотентных они становятся много-, или мультипотентными, то есть сохраняют потенцию, возможность превращаться в определенную группу типов клеток. Например, мезенхимальные стволовые клетки способны превращаться (дифференцироваться) в клетки костной ткани, хрящевые и жировые клетки, а гемопоэтические стволовые клетки дают начало всем клеткам крови: хорошо известным по анализам крови моноцитам, нейтрофилам, эритроцитам, тромбоцитам и др. Превращения, или дифференцировка, могут идти в несколько ступеней. Каждая дифференцировка снижает возможности превращения, или потенцию, клетки. Клетка остается стволовой, если она сохраняет способность к дифференцировке и производству специализированной, или функциональной, клетки (в дальнейшем мы будем называть функциональными клетки, не являющиеся стволовыми и выполняющими в организме определенные функции). Часто стволовая клетка может порождать только один тип специализированной клетки. Например, клетка иммунной системы моноцит порождает только макрофаг.
Стволовые клетки играют роль клеточного резерва в организме человека. Они обитают в определенных нишах, представляющих собой места обитания множества стволовых клеток, которые физически поддерживают эти клетки и служат как бы интерфейсом между подсознанием и самими клетками. При необходимости мозг дает команду на активизацию клеток, находящихся в нише, и они направляются для замены старых или поврежденных специализированных клеток. Стволовые клетки могут быть также активированы по межклеточному сигналу, полученному от других клеток.
Стволовые клетки при делении могут произвести две соответствующие функциональные клетки, например клетки
Возможно, потеря или израсходование стволовых клеток – одна из причин старения организма. Получить стволовые клетки из обычных специализированных, или, как их еще называют, соматических клеток [11] , оказалось технологически не слишком трудно. Для этого достаточно в клетку, например, кожи или другого органа ввести четыре фактора транскрипции [12] , открытых японским ученым Яманаки. Преобразованные в стволовые клетки соматические клетки, в отличие от эмбриональных стволовых клеток, называют индуцированными плюрипотентными стволовыми клетками. Подобно эмбриональным клеткам, они могут дифференцироваться практически в любые клетки организма. За это открытие Синъя Яманаки в 2012 году удостоился Нобелевской премии.
11
«Сома» в переводе с греческого «тело», соматические – обычные клетки тела, например кожи.
12
Факторы транскрипции Oct4, Sox2, Klf4 и c-Myc (OSKM, или факторы Яманаки), активируют определенный набор генов и таким образом переводят соматические клетки в плюрипотентные стволовые клетки. Это превращение происходит путем эпигенетической регуляции клеточных процессов.
Итак, экспрессия группы генов, эпигенетический аккорд, активирующий одни гены и выключающий другие, может не только создавать различные типы специализированных клеток, но и превращать специализированные клетки в стволовые, как бы обращая время вспять.
Мы выяснили, что для того, чтобы стволовая клетка стала определенной специализированной клеткой, например клеткой печени, необходимо активировать строго определенный набор генов. Для этого, по аналогии с факторами Яманаки, достаточно активировать определенные факторы транскрипции.
Основные регуляторные участки генов называются промоторами (легко запомнить: промотор – тот, кто продвигает проект, идею, товар) и энхансерами (enhancer по-английски «усилитель»). Промотор дает старт для транскрипции, то есть созданию РНК по образу и подобию гена (это мы обсудим подробно в следующей главе). Энхансер – усилитель работы гена, который может в несколько раз увеличить его транскрипцию, то есть получить не одну, а множество РНК-копий гена.
Ученым удалось проследить за активностью промоторов и энхансеров более чем в 190 типах клеток человека и идентифицировать 180 тыс. промоторов и 44 тыс. энхансеров. Установлено, что типы клеток различаются активностью регуляторов транскрипции или экспрессии генов. То есть для каждого типа клеток характерны свой эпигенетический профиль, или аккорд (набор активных генов), и специфические для этого типа регуляторы транскрипции (промотеры и энхансеры).
Когда при очередном делении клетки нужно произвести клетку нового типа, например той же печени, в той части делящейся стволовой клетки, которой суждено стать клеткой печени, должны быть запущены соответствующие регуляторы транскрипции (транскрипционные факторы, промотеры и энхансеры), которые активируют и усилят нужный набор генов, соответствующий эпигенетическому профилю печени. При этом для многих таких превращений уже известны необходимые регуляторы.
Остается один, но, может быть, самый главный вопрос: как эта часть делящейся стволовой клетки узнает, что именно она должна стать клеткой печени? Значит ли это, что есть план или чертеж, по которому идет строительство организма?
Мы все привыкли к планам, проектам, чертежам и конструкциям. На первый взгляд, без них невозможно собрать такую сложнейшую конструкцию, как человеческий организм. Но где может находиться этот план или чертеж? Ответ может быть только один: всё в той же клетке. Больше негде! А в клетке есть только одно место, где хранится вся информация, – ядро клетки, а точнее ДНК. Эта огромная, состоящая из 3 млрд нуклеотидов (условных знаков, букв, в следующей главе мы опишем их подробнее) молекула содержит информацию о конструкции всех образуемых в клетке белков (в следующей главе мы подробно на этом остановимся). Белки играют в клетке роль регуляторов и отвечают за скорости всех проходящих в клетках химических реакций. Значит, активируя те или иные гены, генерирующие белки, можно регулировать все химические процессы в клетке и, следовательно, ее структуру и функцию. Однако за генерацию белков отвечает только примерно 1,5 % всех входящих в ДНК нуклеотидов.