Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Шрифт:
Человечество стоит на пороге, возможно, величайшего приключения в своей истории. Не исключено, что пропасть, отделяющая рассуждения Азимова и Стэплдона от реальности, будет преодолена при помощи тех поразительных открытий и стремительных изменений, которые в настоящее время происходят в науке. И первый этап нашего долгого пути к звездам начнется тогда, когда мы сумеем покинуть Землю. Как гласит старая китайская пословица, путь в тысячу ли начинается с первого шага. Дорога к звездам начинается с самой первой ракеты.
Часть I
Покидая землю
Всякий, кто сидит на верхушке крупнейшей в мире системы с кислородно-водородным топливом, зная, что ее собираются поджечь снизу, и не испытывает хотя бы легкого беспокойства, не до конца понимает сложившуюся ситуацию.
1. Подготовка к старту
19
Звали этого молодого человека Роберт Годдард. Именно он построил первую жидкостную многоступенчатую ракету и тем самым запустил цепочку событий, которым суждено было изменить ход истории человечества.
Циолковский – одинокий мечтатель
Годдард принадлежал к небольшой горстке первопроходцев, которые, несмотря на изоляцию, бедность и насмешки окружающих, упорно продвигались вперед наперекор всему – и в итоге заложили фундамент для космических путешествий. Одним из первых в ряду этих мечтателей был великий русский ученый-ракетчик Константин Циолковский, который продумал теоретические основы космических путешествий и проложил дорогу Годдарду. Циолковский был затворником, жил в бедности и с трудом сводил концы с концами, зарабатывая на жизнь учительством. В юности он проводил большую часть времени в библиотеке – проглатывал научные журналы, изучал Ньютоновы законы движения и пытался применить их к космическим путешествиям [3] . Его мечтой было путешествие на Луну и Марс. Самостоятельно, без помощи ученого сообщества, он разобрался в математике, физике и механике ракетной техники и рассчитал для Земли скорость убегания (она же вторая космическая), то есть скорость, необходимую для выхода из поля тяготения нашей планеты. Эта скорость оказалась равна 11,2 км/c, намного больше тех 7 м/c, до которых можно было разогнаться на лошадях в его время.
3
Напомним три закона движения Ньютона:
«Движущийся объект продолжает двигаться, если на него не действует внешняя сила». (Значит, наши космические зонды смогут достигать отдаленных планет с минимальными затратами топлива, поскольку в основном они движутся по инерции, ведь в космосе нет трения.)
«Сила равна произведению массы на ускорение». Этот фундаментальный закон лежит в основе Ньютоновой механики, которая позволяет нам строить небоскребы, мосты и заводы.
«Каждое действие вызывает равное и противоположное противодействие». Именно по этой причине ракеты могут двигаться в открытом космосе.
Эти законы идеально работают при полетах зондов по всей Солнечной системе. Однако они неизбежно нарушаются в некоторых важных случаях: а) при чрезвычайно высоких скоростях, приближающихся к скорости света, б) в чрезвычайно мощных гравитационных полях, например вблизи черной дыры, в) на чрезвычайно малых расстояниях, к примеру внутри атома. Для объяснения этих явлений необходима не Ньютонова механика, а теория относительности Эйнштейна и квантовая теория.
В 1903 г. Циолковский опубликовал знаменитое ракетное уравнение, позволяющее определить максимальную скорость ракеты исходя из ее массы и запаса топлива. Из этого уравнения явствовало, что зависимость между скоростью и массой топлива носит экспоненциальный характер. Было бы логично предположить, что для удвоения скорости ракеты достаточно удвоить количество топлива. На самом же деле при увеличении скорости расход возрастает экспоненциально и для дополнительной прибавки скорости требуется громадное количество топлива.
Cледовательно, ракете нужно очень много горючего, чтобы покинуть Землю. С помощью этой формулы Циолковский оценил, сколько топлива необходимо для полета к Луне, задолго до того, как его мечта воплотилась в реальность.
Циолковский следовал принципу: «Земля – колыбель человечества, но нельзя вечно жить в колыбели». Он придерживался философии так называемого космизма, связывающей будущее человечества с исследованием открытого космоса. В 1911 г. он писал: «Стать ногой на почву астероидов, поднять камень с Луны, устроить движущиеся станции в эфирном пространстве, образовать живые кольца вокруг Земли, Луны, Солнца, наблюдать Марс на расстоянии нескольких десятков верст, спуститься на его спутники или даже на самую его поверхность – что, по-видимому, может быть сумасброднее!» [4]
4
Циолковский К. Э. Избранные труды. – М.: Издательство Академии наук СССР, 1962. С. 205.
Хотя сам Циолковский был слишком беден, чтобы превратить свои математические выкладки в действующие модели, за продолжателями дело не стало: следующий шаг сделал Роберт Годдард. Он своими руками построил прототипы, которым впоследствии суждено было стать основой космических путешествий.
Роберт Годдард – отец ракетной техники
Роберт Годдард заинтересовался наукой в детстве, когда на его глазах проводили электричество в его родной город. Уже тогда он твердо уверился, что наука революционно изменит нашу жизнь во всех ее аспектах. Отец, поощряя интерес мальчика, купил ему телескоп, микроскоп и подписку на журнал Scientific American. Первые эксперименты Годдарда были связаны с воздушными змеями и шарами. Однажды в библиотеке он случайно наткнулся на знаменитые «Математические начала» Исаака Ньютона и познакомился с законами движения. Вскоре после этого его интересы определились: Годдард сосредоточился на том, чтобы применить законы Ньютона в ракетной технике.
Годдард не просто удовлетворял свое любопытство, он предложил три важных новшества. Во-первых, экспериментируя с различными видами топлива, он пришел к выводу, что порошковое топливо для ракеты неэффективно. Китайцы изобрели порох много столетий назад и давно использовали его в ракетах, но порох сгорает неравномерно, так что ракеты китайцев в основном были не более чем игрушками. Первым блестящим нововведением Годдарда стала замена порошкового топлива жидким, расход которого можно контролировать, добиваясь ровного и чистого горения. Он построил ракету с двумя баками: в одном было топливо (к примеру, спирт), в другом – окислитель (к примеру, жидкий кислород). Жидкости через систему трубок и клапанов подавались в камеру сгорания, где происходил тщательно контролируемый взрыв, способный толкать ракету.
Годдард понимал, что по мере подъема ракеты в небо ее топливные баки будут постепенно опустошаться. Его следующим важным новшеством стали многоступенчатые ракеты, которые отделяли использованные топливные баки и таким образом избавлялись от бесполезной нагрузки. Это резко повышало дальность и эффективность полета.
Наконец, Годдард использовал гироскопы. После того как гироскоп раскручен, его ось сохраняет ориентацию в пространстве, всегда указывая одно и то же направление, даже если вы повернете гироскоп. К примеру, если ось гироскопа указывает на Полярную звезду, она будет указывать в этом направлении даже после того, как вы перевернете гироскоп вверх ногами. Значит, космический корабль, даже отклоняясь от своей траектории, может изменить работу своих двигателей так, чтобы компенсировать это отклонение и вернуться на первоначальный курс. Годдард понял, что для нацеливания ракет и удержания их на курсе нужно использовать гироскопы.
В 1926 г. он вошел в историю, произведя первый успешный запуск ракеты на жидком топливе. Она взлетела вверх на 12,5 м, продержалась в воздухе 2,5 с и приземлилась на капустную грядку в 56 м от точки старта. Место, где это произошло, сегодня свято для любого ученого-ракетчика и объявлено в США Национальным памятником истории.
В своей лаборатории в Колледже Кларка Годдард разработал базовую архитектуру для ракет на химическом топливе. Те грохочущие чудища, которые мы сегодня видим отрывающимися от стартовых площадок, – прямые потомки построенных им моделей.
Под градом насмешек
Несмотря на успехи, Годдард стал идеальным козлом отпущения для средств массовой информации. Когда в 1920 г. в прессу просочилась информация о том, что исследователь всерьез задумывается о космических путешествиях, газета The New York Times откликнулась на новость уничтожающей критикой, которая менее крупного ученого легко могла бы сломать. «С нашей стороны было бы нелепо утверждать, что профессору Годдарду с его “кафедрой” в Колледже Кларка, – насмехалась The New York Times, – неизвестна связь между действием и противодействием и что ему неизвестно, что нужно иметь что-нибудь посущественнее вакуума, от чего можно оттолкнуться. Разумеется, нам только кажется, что у него отсутствуют знания, которыми нас ежедневно снабжают в старших классах школы» [5] . А в 1929 г., после того как он запустил одну из своих ракет, местная газета вышла с заголовком «Лунная ракета промахнулась по своей цели на 238 799,5 миль». Ясно, что авторы газеты и другие журналисты не понимали Ньютоновых законов движения и ошибочно полагали, что ракеты не могут двигаться в космическом вакууме.
5
Сhris Impey, Beyond (New York: W. W. Norton, 2015), p. 30.