БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета
Шрифт:
30 * 3/4 = (30+15)/2= 221/2 (или 22,5)
Видоизменение способа состоит в том, что от множимого отнимают его четверть или к половине множимого прибавляют половину этой половины.
Умножение на 15, на 125, на 75
§ 17
Умножение на 15 заменяют умножением на 10 и на 11/2, (потому что 10*11/2 =15) Например:
18*15=18*11/2*10=270
45*15=450+225=675
§ 18.
Умножение
26*125 = 26*100*11/4 = 2600 + 650 = 3250
47*125 = 47*100*11/4 = 4700+4700/4= 4700+1175 = 5875
§ 19.
Умножение на 75 заменяют умножением на 100 и на 3/4 (потому что 100*3/4=75). Например:
18*75= 18*100*3/4 =1800* 3/4 =(1800 + 900)/2=1350
Примечание. Некоторые из приведенных примеров удобно выполняются также приемом § 6
18*15 = 90*3 = 270
26*125 = 130*25 = 3250
Умножение на 9 и на 11
§ 20.
Чтобы устно умножить число на 9, приписывают к нему ноль и отнимают множимое. Например:
62*9=620-62=600—42=558
73*9=730-73=700—43=657
§ 21
Чтобы устно умножить число на 11, приписывают к нему ноль и прибавляют множимое. Например:
87*11=870+87=957
Деление на 5, на 11/2,на 15
§ 22
Чтобы устно разделить число на 5, отделяют запятой в удвоенном числ-последнюю цифру. Например:
68:5=136:10=13,6
237:5 =474:10=47,4
§ 23
Чтобы устно разделить число на 11/2 делят удвоенное число на 3. Например:
36:11/2=72:3=24
53:11/2=106:3=351/3
§ 24.
Чтобы устно разделить число на 15, делят удвоенное число на 30. Например
240:15=480:30=48:3=16
462:15=924:30=3024/30=304/5=30,8 (или 924:30 =308:10=30,8)
Возвышение в квадрат
$ 25.
Чтобы возвысить в квадрат число, оканчивающееся цифрой 5 (например 85), умножают число десятков (8) на него же плюс единица (8*9=72) и приписывают 25 (в нашем примере получается 7225). Еще примеры:
252; 2*3=6; 625
452; 4*5= 20; 2025
1452; 14*15 = 210; 21025
Прием этот вытекает из формулы (10х+5)2 = 100х2+100х+25=100х(х+1)+25
§ 26.
Сейчас указанный прием приложим и к десятичным дробям, оканчивающимся цифрой 5:
8,52 = 72,25
14,52=210,25
0,352 = 0,1225f и т. п.
§ 27.
Так как 0,5= 1/2 , а 0,25 = 1/4 , то приемом § 25 можно пользоваться также и для возвышения в квадрат чисел, оканчивающихся дробью 1/2 :
(8 1/2 )2 =72 1/4
(14 1/2 )2 = 210 1/4 и т п.
§ 28.
При устном возвышении в квадрат часто удобно бывает пользоваться формулой (a +-b)2 = a2 +b2+- 2ab.
Например: 412=402 +1+2*40= 1601+80= 1681
692=702+1-2*70=4901-140=4761
362 =(35+1)2=1225+1+ 2*35=1296
Прием удобен для чисел, оканчивающихся на 1, 4, 6 и 9.
Вычисления по формуле
(а+b) (а-b) = а2 — b2
§ 29.
Пусть требуется выполнить устно умножение 52*48
Мысленно представляем эти множители в виде (50 + 2)*(50—2)
и применяем приведенную в заголовке формулу:
(50+2)*(50—2)=502– 22= 2496
Подобным же образом поступают во всех вообще случаях, когда один множитель удобно представить в виде суммы двух чисел, другой — в виде разности тех же чисел:
69X71=(70—1)*(70+1)=4899
33X27=(30+3)*(30—3)=891
53X57=(55—2)*(55+2)=3021
84X86=(85-1)*(85+1)=7224
§ 30.
Указанным сейчас приемом удобно пользоваться и для вычислений следующего рода:
7 1/2 *6 1/2 =(7 + 1/2 )*(7 — 1/2 )=48 3/4
11 3/4*12 1/4= (12 - 1/4)*(12 +1/4) =143 15/16
Полезно запомнить:
37*З =111
Запомнив это, легко выполнять устно умножение числа 37 на 6, 9, 12 и т. п.
37*6=37*3*2=222
37*9=37*3*3=333
37*12=37*3*4=444
37*15=37*3*5 =555 и т. д,
7*11*13=1001
Запомнив это, легко выполнять устно умножения следующего рода:
77*13=1001
77*26=2002
77*39=3003 и т. д.
91*11=1001
91*22=2002
91*33=3003 и т. д.
143*7=1001
143*14=2002
143*21=3003 и т. д.
В нашей книжечке указаны только простейшие, наиболее удобоприменимые способы устного выполнения действий умножения, деления и возвышения в квадрат. Практикуясь в сознательном пользовании ими, вдумчивый читатель выработает для себя ряд еще и других приемов, облегчающих вычислительную работу.