Чаплыгин
Шрифт:
10 марта 1918 года Советское правительство во главе с В. И. Лениным перенесло центральные государственные учреждения и свое местопребывание в Москву.
Естественно, что представители московской научной общественности стали ближайшими проводниками советской политики во всех областях науки и техники.
17
ЛУЧ СВЕТА ДЛЯ ПРАКТИКОВ
Остроумнейший приятель Чаплыгина, кораблестроитель академик Алексей Николаевич Крылов заметил, оценивая деятельность директора Московских женских курсов:
— Стоило на них только переменить вывеску, и они с полным правом, как по духу, так и по научной постановке преподавания, слились со старейшим в нашем Союзе Московским университетом!
В первые же месяцы установления Советской власти курсы были преобразованы во Второй московский университет и Сергей Алексеевич оставлен в нем ректором. Через год произошла реорганизация: физико-математические факультеты обоих университетов слились в один. Сергей Алексеевич воспользовался поводом и ушел из Второго университета.
Ряд революционных организаций требовал его консультаций и помощи.
Прежде всего в его математической эрудиции нуждалась Комиссия особых артиллерийских опытов, деятельностью которой заинтересовался В. И. Ленин. На заседании комиссии в декабре 1918 года было решено:
«Просить Н. Е. Жуковского, и С. А. Чаплыгина, и инженера В. П. Ветчинкина заняться механикой газов и ее приложением к внешней и внутренней баллистике; просить С. А. Чаплыгина и В. П. Ветчинкина заняться вопросом расчета прочности новых снарядов».
Приближенный метод решения задач: газовой динамики Сергей Алексеевич разработал еще в своей докторской диссертации. Решения отличались простотой. Однако они годились лишь для случаев течения газа со скоростями, меньшими звуковых. В артиллерии наибольший интерес вызвали исследования при скоростях, больших скорости звука.
Сергею Алексеевичу пришлось сначала сделать сообщение комиссии о том, как делается анализ сопротивления воздуха, а затем доложить о постановке опытов аналитической разработки вопроса сопротивления воздуха движению артиллерийского снаряда в аэродинамической лаборатории Технического училища.
Работа Сергея Алексеевича в Комиссии особых артиллерийских опытов остается малоизвестной и до сего дня. Многие из его друзей не знали о содержании написанных им но заданию комиссии сочинений по баллистике и смежным вопросам математики.
Мало кто знал и о работах Сергея Алексеевича, сделанных по заданию Научно-экспериментального института Народного комиссариата путей сообщения, хотя они и публиковались в «Бюллетенях института» в 1919 году.
И те и другие работы стали известными широким научным кругам лишь в начале тридцатых годов, когда они были опубликованы в «Трудах НАГИ» вод общим заглавием: «Новый метод приближенного интегрирования дифференциальных уравнений».
В предисловии к этому переизданию Сергей Алексеевич писал:
«Приближенное интегрирование дифференциальных уравнений есть один из основных вопросов технической математики, а потому всякий шаг в этой области, если он дает сколько-нибудь новое освещение процесса, представляет интерес. Вот почему я считал правильным собрать воедино свои работы по этому вопросу, частью помещенные в виде журнальных статей в периодической печати, частью изданные в виде отдельных брошюр. Все эти издания стали библиографической
Ставший ныне классическим «метод Чаплыгина» представляет одно из наиболее выдающихся достижений советской науки в области прикладной математики. Он был задуман им как метод, позволяющий удобно оценивать погрешность приближенного решения, чего не дает ни один из ныне существующих методов. Однако значение метода С. А. Чаплыгина не исчерпывается этим, и лишь теперь стало ясным все его значение.
В предисловии к одному из переизданий статей Чаплыгина в серии «Классики естествознания» М. В. Келдыш и Д. Ю. Панов отмечают, что уже после опубликования «Нового метода С. А. Чаплыгина» в 1932 году в «Трудах ЦАГИ» «академик Н. Н. Лузин обратил внимание на аналогию между методом С. А. Чаплыгина и методом Ньютона и показал, что для метода С. А. Чаплыгина имеет место такая же быстрая сходимость, как и для метода Ньютона (сходимость погрешности к нулю)… Вскоре метод С. А. Чаплыгина был распространен на интегральные уравнения, и тем самым показано, что основные идеи С. А. Чаплыгина имеют универсальное значение для решения функциональных уравнений вообще. В последнее время эти идеи получили широкое развитие в работах Л. В. Канторовича, который показал, как можно построить метод решения весьма общего класса функциональных уравнений, аналогичный методу Ньютона. Но еще и сейчас далеко не полностью использовано все богатство оригинальных и глубоких идей, заложенных в этих замечательных работах С. А. Чаплыгина. Как и большинство его работ, работы по приближенному интегрированию дифференциальных уравнений, несомненно, еще долго будут привлекать внимание исследователей и послужат источником новых исканий в этом направлении».
Созданный С. А. Чаплыгиным новый метод приближенного интегрирования дифференциальных уравнений изложен Сергеем Алексеевичем в четырех статьях. В первой, как всегда, строго, обоснованно автор дает «Основания нового способа приближенного интегрирования дифференциальных уравнений», а во второй статье демонстрирует примером свой «Новый метод интегрирования общего дифференциального уравнения движения поезда». Третья статья развивает работу, начатую в комиссии, — «Интегрирование основных уравнений баллистики при законе сопротивления, данном Лоренцом». В заключительной же, четвертой, — дается приближенное интегрирование обыкновенного дифференциального уравнения первого порядка.
Если метод Чаплыгина создавался для решения задач баллистики и движения поезда, то сейчас им пользуются и для решения задач космонавтики.
Только теперь, когда все эти работы С. А. Чаплыгина опубликованы не один раз, восстанавливается яркая картина напряженной деятельности Сергея Алексеевича в первые годы Советской власти. Вызванные запросами практики, работы эти характеризуют не только математический гений ученого, но и являют нам Чаплыгина как представителя передовой русской науки, которой было «по пути с революцией».
В. И. Вернадский, как историк русского естествознания, писал:
«Весь XIX век есть век внутренней борьбы правительства с обществом, борьбы, никогда не затихавшей. В этой борьбе главную силу составляла та самая русская интеллигенция, с которой все время были тесно связаны научные работники».
Победа Великой Октябрьской социалистической революции явилась победой и русской науки, победой Жуковского, Чаплыгина, Вернадского, Сеченова, Павлова, Тимирязева и многих других представителей передовой русской науки.