Чтение онлайн

на главную - закладки

Жанры

ChatGPT для саморазвития: Освоения программирования, консалтинга и изучения иностранных языков
Шрифт:

Чат:

Поскольку предобработка данных уже выполнена, приступим к построению и обучению модели. В качестве модели я выберу случайный лес (Random Forest) из библиотеки sklearn.

Сначала разделим данные на обучающую и тестовую выборки, а затем обучим модель.

Теперь,

когда модель обучена, вы можете использовать её для предсказания выживаемости на новых данных.

Пример:

Таким образом, вы можете использовать обученную модель для предсказания выживаемости на основе данных о пассажирах.

Внимание:

Как вы заметили на представленном выше скриншоте, пользователь использовал слово "продолжай". Мы используем это слово в случае, когда по каким-то неизвестным нам причинам ChatGPT не завершает свой ответ до конца и обрывается на полпути.

Написание слова "продолжай" воспринимается чатом как инструкцию продолжить с того места, где он остановился. Однако, если мы напишем это слово, когда чат уже завершил свою мысль, то он воспримет это как просьбу дать нам еще примеров или информации по данному запросу.

Результат:

Выполняем все рекомендации Чата и посмотрим смотрим что из этого получилось.

Пользователь:

Что означает Accuracy: 0.76 и Survived prediction: 0

Чат:

Accuracy: 0.76 означает, что точность вашей модели составляет 76%. Точность (accuracy) – это доля правильно классифицированных объектов от общего количества объектов. В данном случае, модель правильно предсказала выживаемость пассажиров в 76% случаев на тестовой выборке. Это одна из метрик оценки качества классификации.

Survived prediction: 0 относится к примеру с новыми данными о пассажире. Значение 0 указывает на то, что модель предсказывает, что этот пассажир не выживет в случае кораблекрушения. В данной задаче классификации значение 0 соответствует классу "не выжил", а значение 1 соответствует классу "выжил".

Пользователь:

Давайте попробуем сделать изменения в коде самостоятельно, без запросов в ChatGPT. Мы заменим значения для предсказания на свои собственные, вместо мужчины мы подставим женщину, а все остальные параметры оставим без изменений.

Результат:

Выполняем все изменения и посмотрим смотрим что из этого получилось.

Получается, что женщина с теми же параметрами выжила. Это неудивительно, учитывая тот факт, что на борту спасательных шлюпок в первую очередь спасали женщин и детей. Мы можем сделать вывод, что пол пассажира был одним из факторов, влияющих на выживаемость в данном случае.

Пользователь:

Как добиться более высокой точности модели?

Чат:

Для достижения более высокой точности модели можно выполнить следующие шаги:

Инжиниринг признаков:

Создайте новые признаки на основе существующих данных. Например, вы можете создать признак "IsAlone" (один путешествует), если количество родственников на борту (Siblings/Spouses Aboard + Parents/Children Aboard) равно нулю.

data["IsAlone"] = (data["Siblings/Spouses Aboard"] + data["Parents/Children Aboard"]).apply(lambda x: 1 if x == 0 else 0)

Отбор признаков:

Оцените значимость признаков и исключите незначимые или шумные признаки из обучения.

Оптимизация гиперпараметров:

Подберите оптимальные значения гиперпараметров модели, например, используя поиск по сетке (GridSearchCV) или случайный поиск (RandomizedSearchCV) из sklearn.

Дополнительно – рекомендации автора:

Для более полного понимания метрик машинного обучения, их разнообразия и правильного выбора в различных ситуациях, мы рекомендуем ознакомиться с книгой того же автора под названием "Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик".

Также, если вам необходимо овладеть процессом машинного обучения для табличных данных и узнать, какие вопросы стоит задавать чат-боту при обработке таких данных, мы рекомендуем прочитать книгу этого же автора "Табличное Мастерство: Осваиваем Модели Машинного Обучения для Анализа Табличных Данных". Обе книги помогут вам овладеть профессиональными навыками в области машинного обучения и эффективно применять их на практике.

Выводы

Мы успешно прошли полный процесс машинного обучения на языке Python, начиная с загрузки и предобработки данных, их визуализации, разделения на обучающую и тестовую выборки, обучения модели и тестирования ее на данных, а также объяснения результатов и возможных дальнейших шагов.

Конец ознакомительного фрагмента.

Поделиться:
Популярные книги

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Запрети любить

Джейн Анна
1. Навсегда в моем сердце
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Запрети любить

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II