Человеческое познание его сферы и границы
Шрифт:
Как и в измерении времени, здесь действуют три фактора: во-первых, допущение, доступное исправлению; во-вторых, физические законы, которые при этом допущении оказываются приблизительно верными; в-третьих, изменение допущения, делающее физические законы более точными. Если вы допустите, что стальной стержень, выглядящий зрительно и осязательно жестким, сохраняет свою длину неизменной, то вы найдете, что расстояние от Лондона до Эдинбурга, диаметр Земли и расстояние до Сириуса почти постоянны, но немного короче при теплой погоде, чем при холодной. Тогда окажется, что проще сказать, что ваш стальной стержень при нагревании расширяется, особенно когда вы найдете, что это позволяет вам рассматривать вышеупомянутые расстояния как почти постоянные, и, далее, сказать, что вы видите, как ртуть в термометре занимает больше пространства в теплую погоду. Вы, следовательно, допускаете, что жесткие по видимости тела расширяются от теплоты, и вы допускаете это для
Попробуем выяснить, что в этом процессе является условным и что оказывается физическим фактом. Физическим фактом является то, что если вы возьмете два стальных стержня одинаковой комнатной температуры и по видимости одинаковой длины и нагреете один из них на огне, а другой положите в снег, то, когда вы после сравните их, окажется, что тот, который был на огне, будет выглядеть несколько длиннее, чем тот, который был в снегу, но когда они оба снова будут иметь температуру вашей комнаты, эта разница исчезнет. Я здесь исхожу из допущения донаучных методов определения температуры: горячим или холодным телом считаю то, что горячо или холодно на осязание. В результате таких грубых донаучных наблюдений мы решаем, что термометр дает точное измерение того, что приблизительно измеряется нашими осязательными ощущениями тепла и холода; мы можем теперь в качестве физиков игнорировать эти осязательные ощущения и обращаться только к термометру. Было бы тавтологией говорить, что ртуть в моем термометре поднимается вместе с повышением температуры, существенным же фактом является то, что все другие термометры ведут себя подобным же образом. Этот факт устанавливает сходство между поведением моего термометра и поведением других тел.
Но элемент условности не вполне таков, каким я его установил. Я не исхожу из предположения, что мой термометр правилен по определению; наоборот, всеми признается, что каждый действующий термометр более или менее неточен. Идеальный термометр, к которому действующие термометры только приближаются, есть такой, который, будучи принят за точный, делает общий закон расширения тел при повышении их температуры настолько точным, насколько это возможно. Эмпирическим фактом является то, что благодаря соблюдению определенных правил при изготовлении термометров мы можем делать их все более и более приближающимися к идеальному термометру, и именно этот факт оправдывает концепцию температуры как величины, имеющей для данного тела в данное время некоторое точное значение, которое может слегка отклоняться от значения, даваемого всяким действующим термометром.
Этот процесс одинаков во всех физических измерениях. Грубые измерения ведут к приблизительному закону; изменения в измерительных приборах (подчиняющиеся правилу, что все инструменты для измерения одной и той же величины должны давать насколько возможно точно один и тот же результат) способны делать закон все более точным. Наилучшим инструментом считается такой, который дает наивысшую возможную степень точности закона, причем считается, что идеальный инструмент мог бы сделать закон абсолютно точным.
Данное положение хотя и может показаться сложным, все-таки еще недостаточно сложно. Этот процесс иногда бывает связан только с одним законом, и очень часто случается, что и самый закон приблизителен. Измерения различных величин взаимозависимы, как мы это только что видели в примере с длиной и температурой, так что изменение в способе измерения одной величины может изменить меру другой величины. Законы, условия и наблюдения отдельных фактов бывают почти неразрешимым образом связаны и смешаны в реальном процессе развития науки. Результат наблюдения обычно устанавливается в форме, которая предполагает определенные законы и определенные условные допущения; если результат противоречит системе принятых до этого законов и условных допущений, то исследователю может быть предоставлена значительная свобода в выборе того, какой из этих законов или условных допущений должен быть изменен. Избитым примером этого является эксперимент Майкельсона-Морли, в котором оказалось, что самое простое его истолкование влечет за собой радикальное изменение временных и пространственных измерений.
Но вернемся к измерению расстояния. Здесь имеется большое число грубых донаучных наблюдений, которые наводят на мысль о действительно применяемых методах измерения. Если вы идете или едете на велосипеде по гладкой дороге, применяя равномерное и одинаковое усилие для движения, то вам потребуется приблизительно одинаковое время для каждой следующей одна за другой мили дороги. Если дорога асфальтируется, то количество материала, необходимое для одной мили, будет приблизительно таким же, которое потребуется и для другой мили. Если вы едете по дороге на автомобиле, то время, затрачиваемое на каждую милю, будет приблизительно таким, какое вы предвидите на основании показаний вашего спидометра. Если вы основываете тригонометрические вычисления, исходя из предположения, что все последующие мили одинаковы, то результаты будут
В понятии «точности», однако, имеется один элемент, который не просто только удобен. Мы привыкли к аксиоме, что две вещи, порознь равные одной и той же третьей, равны между собой. Эта аксиома имеет показную и обманчивую видимость очевидности вопреки тому, что эмпирическое свидетельство против нее. Самыми тонкими испытаниями, какие только можно применить, вы можете обнаружить, что А равно В и что В равно С, но что А заметно не равно С Когда это получается, мы говорим, что А в действительности не равно В или что В не равно С. Довольно странно, что мы склонны это утверждать, когда техника измерения совершенствуется. Но настоящая основа нашей веры в эту аксиому не эмпирична. Мы верим, что равенство состоит в обладании общим свойством. Две длины равны, если они имеют одну и ту же величину, и именно эту величину мы и выражаем при измерении. Если мы правы в этом, то аксиома логически необходима. Если A и B имеют одну и ту же величину и если В и С имеют ту же самую величину, то А и С необходимо имеют эту же величину, если только все измеряемое имеет только одну величину.
Хотя эта вера в величину как свойство, которое может быть общим для разных измеряемых вещей, скрыто и влияет на обыденный здравый смысл в его понимании того, что является очевидным, все-таки мы не должны принимать эту веру, пока не имеем свидетельства ее истинности в том частном вопросе, который мы рассматриваем. Вера в то, что у каждого из ряда членов имеется такое свойство, логически эквивалентна вере, что существует транзитивное симметричное отношение, имеющее место между любыми двумя членами ряда. (Эта эквивалентность есть то, что я раньше назвал «принципом абстракции».) Таким образом, утверждая, что имеется ряд величин, называемых «расстояниями», мы утверждаем следующее: между точками любой одной пары точек и точками любой другой пары имеет место или симметричное транзитивное отношение или асимметричное транзитивное отношение. В первом случае мы говорим, что расстояние между точками одной пары равно расстоянию между точками другой пары; в последнем случае, в соответствии со смыслом отношения, мы говорим, что первое расстояние меньше или больше, чем второе. Расстояние между двумя точками может быть определено как класс пар точек, имеющих между собой равные расстояния.
Это все, что мы можем сказать по вопросу измерения, не входя в обсуждение вопроса об определении прямых линий, которым мы теперь должны заняться.
Прямая линия возникла как оптическое понятие обыденного здравого смысла. Некоторые линии выглядят прямыми. Если прямой стержень держать концом против глаза, то его ближайшая к глазу часть скроет все остальное, тогда как если стержень искривлен, то будет видна та его часть, которая находится за искривлением. Имеются, конечно, также и другие основания обыденного здравого смысла в пользу понятия прямой линии. Если тело вращается, то образуется прямая линия — ось вращения, — которая остается неподвижной. Если вы едете стоя в вагоне метро, то вы можете определить, когда поезд идет по кривой, на основании того, что ваше тело имеет тенденцию наклоняться при этом в ту или другую сторону. Существует также возможность до определенной степени устанавливать прямизну посредством осязания; слепые почти так же хорошо определяют формы, как и зрячие.
В элементарной геометрии прямые линии определяются в целом; их главной характеристикой является то, что прямая линия определена, если даны две ее точки. Возможность рассмотрения расстояния как прямолинейного отношения между двумя точками зависит от предположения, что существуют прямые линии. Но в современной геометрии, приспособившейся к нуждам физики, нет прямых линий в евклидовом смысле, и «расстояние» определяется двумя точками только тогда, когда они расположены очень близко друг к другу. Когда две точки расположены далеко друг от друга, мы должны сначала решить, по какому маршруту мы будем двигаться от одной к другой, и затем сложить много мелких отрезков этого маршрута. «Самой прямой» линией между этими двумя точками будет та, в которой сумма отрезков будет минимальной. Вместо прямых линий мы должны употреблять здесь «геодезические линии», которые являются более короткими маршрутами от одной точки к другой, чем любые другие отличающиеся от них маршруты. Это нарушает простоту измерения расстояний, которое становится зависимым от физических законов. В получающихся в результате этого усложнениях в теории геометрического измерения нельзя разобраться без более тщательного исследования связи физических законов с геометрией физического пространства.