Человек, который принял жену за шляпу и другие истории из врачебной практики
Шрифт:
Несмотря на подобное «невежество», близнецов продолжают называть календарными калькуляторами, голословно заключая, что их умения связаны не с памятью, а с подсознательным алгоритмом календарных вычислений. Но если вспомнить, что даже один из величайших математиков и счетчиков – Карл Фридрих Гаусс испытывал трудности с алгоритмом определения даты Пасхи, то едва ли можно поверить, что, не владея простейшими арифметическими действиями, близнецы могли разработать и успешно применять подобный алгоритм.
Следует заметить, что многие известные счетчики действительно пользуются алгоритмами собственного изобретения. Именно это, возможно, и побудило В. Горвица и его коллег [123] сделать вывод, что так обстоит дело и с близнецами. Стивен Смит,
Здесь действует нечто загадочное, хотя и широко распространенное – таинственная способность человека на основе примеров формировать подсознательные алгоритмы.
123
См. Horwitz, W. A. et al. «Identical twin «idiots savants» – calendar calculators», American J. Psychiat. (1965) 121:1075-1079. (Прим. автора).
Если бы все дело было только в этом, то близнецы и вправду не представляли бы собой ничего особенного и таинственного. Доступные компьютерам вычислительные алгоритмы – чистая механика, и принадлежат они к области задач, а не тайн природы.
И тем не менее даже в некоторых «цирковых» трюках близнецов есть нечто поразительное. Майкл и Джон, к примеру, могут описать погоду и события любого дня своей жизни, начиная с того времени, когда им было по четыре года. Их речь, хорошо схваченная Робертом Сильвербергом в образе Меланжио [124] , одновременно инфантильна, исключительно подробна и начисто лишена эмоций. Назовите им любую дату – и, повращав глазами и устремив взгляд в пространство, они примутся бесстрастно и монотонно описывать погоду, политические события и эпизоды своей собственной жизни в тот день… Нередко в их рассказах упоминаются болезненные и мучительные происшествия детства, презрение и травля со стороны окружающих, но все это сообщается ровным тоном, без намека на внутреннюю оценку или чувство. Похоже, здесь действует чисто «документальная» память, без какого бы то ни было личного отношения, без всякого внутреннего соучастия и живой струны.
124
Дэвид Меланжио, герой романа Роберта Сильверберга «Тернии», прототипом которого являются близнецы.
Можно предположить, что эмоции вытеснены из памяти близнецов в результате защитной реакции, свойственной обсессивному и шизоидному типу (к которому, безусловно, принадлежат Майкл и Джон), но гораздо вероятнее, что их воспоминания по самой своей природе документальны и бесстрастны. Отсутствие связи с личностью является ключевой характеристикой подобного рода эйдетической памяти.
Память эта, несмотря на незрелость и безликость, заслуживает дополнительного внимания в силу особых свойств, обычно упускаемых профессионалами, однако заметных любому неподготовленному, но способному удивляться наблюдателю. Поражают прежде всего ее колоссальные масштабы, отсутствие у нее всяких видимых пределов, а также самый способ извлечения воспоминаний. Если спросить близнецов, как удается им удерживать в голове трехсотзначные числа и триллионы событий сорока лет жизни, они ответят просто: «Мы это видим». Визуализация – необычайной интенсивности, неограниченного радиуса и абсолютной достоверности – является ключом к пониманию происходящего. Вероятно, это врожденное физиологическое свойство их мозга, похожее на те способности к внутреннему усмотрению, которые обнаружил А. Р. Лурия у своего мнемониста (хотя, скорее всего, у близнецов отсутствует такая яркая синестезия и сознательная организация воспоминаний, как у знаменитого луриевского пациента). Я считаю, что близнецам доступна гигантская панорама, что-то вроде ландшафта или горного рельефа – пространство всего, что они когда-либо слышали, видели, думали и делали. В мгновение ока, заметное извне как краткое вращение зрачков и фиксация взгляда, они могут обнаружить и разглядеть мысленным
Такая память очень необычна, но не уникальна. Она встречается и у других людей, но мы почти ничего не знаем о ее происхождении и механизме. Есть ли в близнецах помимо нее еще хоть что-нибудь более глубокое и интересное? Думаю, что есть.
Известна история о том, как в девятнадцатом веке сэр Герберт Окли, эдинбургский профессор музыки, оказавшись как-то в деревне и услышав визг поросенка, тут же закричал «соль-диез!» Кто-то подбежал к роялю проверить – звук и вправду оказался соль-диезом. Именно этот забавный эпизод напомнило мне мое первое, неожиданное и удивительное знакомство с природным талантом, с «естественным» режимом существования близнецов.
Однажды я увидел, как с их стола упал коробок спичек, и его содержимое рассыпалось по полу. «Сто одиннадцать!» – одновременно закричали оба, и затем Джон вдруг прошептал: «Тридцать семь». Майкл повторил это число, Джон произнес его в третий раз и остановился. Мне потребовалось некоторое время, чтобы сосчитать спички, – их было 111.
– Как вы могли пересчитать их так быстро? – спросил я и услышал в ответ:
– Мы не считали. Мы просто увидели, что их сто одиннадцать.
Подобные истории рассказывают о Захарии Дэйзе, числовом вундеркинде, который, взглянув на просыпавшуюся кучку горошин, немедленно восклицал «сто восемьдесят три» или «семьдесят девять». Будучи, как и близнецы, недоразвит, он по мере сил объяснял, что не считает, а «видит» число горошин, сразу и мгновенно.
– А почему вы прошептали «тридцать семь» и повторили три раза? – спросил я близнецов.
– Тридцать семь, тридцать семь, тридцать семь, сто одиннадцать, – в один голос ответили они.
Это меня совсем уж озадачило. Их способность мгновенно видеть стоодиннадцатность была удивительна, но, пожалуй, не больше, чем «соль-диез» Окли – этакий «абсолютный слух» на числа. Но они вдобавок еще и разложили 111 на множители, причем сделали это без всякого метода, не зная даже, что такое «множитель». К тому моменту я уже убедился, что они неспособны выполнять простейшие вычисления и не понимают умножения и деления, – и вот теперь у меня на глазах они вдруг разложили составное число на три равные части.
– Как вы это посчитали? – спросил я с любопытством – и в ответ опять услышал путаные объяснения, сводящиеся к тому, что они не считали, а просто «увидели». Возможно, понятий для передачи этого действия вообще не существует. Джон сделал жест тремя растопыренными пальцами, показывая что-то неопределенное – то ли как они разрезали число натрое, то ли что оно само по себе разделилось на три равные части в результате спонтанного числового «распада».
Моя реакция их сильно удивила, как будто это я был незрячим; жест Джона отчетливо говорил о некой очевидной им, непосредственно воспринимаемой реальности. Возможно ли, спрашивал я себя, что они каким-то образом прямо усматривают характеристики чисел, причем не как абстрактные атрибуты, а как доступные ощущению конкретные свойства? Более того, не просто изолированные качества, как, например, «стоодиннадцатность», а свойства отношений, подобно тому как сэр Герберт Окли слышал третьи и пятые доли тона в музыкальных интервалах!
Наблюдая, как близнецы «рассматривают» события и даты, я уже понял, что они удерживают в памяти огромную мнемоническую ткань, гигантский, может быть, бесконечный ландшафт, в котором факты существуют не только по отдельности, но и в соотношении друг с другом. И все же неумолимая и хаотическая документальная лента, крутившаяся в их мозгу, состояла главным образом из изолированных эпизодов, а не из осмысленных отношений между ними. Осознав это, я подумал, что, возможно, удивительная способность близнецов к визуализации – способность вполне практическая и совершенно отличная от концептуализации – позволяла им непосредственно видеть абстрактные связи и соотношения, как случайные, так и существенные. Если близнецы были в состоянии ухватить взглядом «стоодиннадцатность», что мешало им усматривать чудовищно сложные созвездия и плеяды чисел – видеть, распознавать, соотносить и сравнивать, причем полностью чувственным, неинтеллектуальным образом?