Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
Шрифт:
Через четыре года, располагая уже 29 лучевыми скоростями, вдвое больше прежнего, Вирц повторил свое исследование, в сущности получив тот же результат. Кажется, в этой работе он впервые кратко назвал K-член — красным смещением.
А в промежутке между двумя работами Вирца такой же расчет с K-членом сделал и Лундмарк. Тогда еще природу туманностей в сущности не знали и вместе со спиралями и Магеллановыми Облаками Лундмарк использовал также и планетарные туманности. Но спиралей было большинство и из всех вариантов его решений также неизменно следовал общий вывод: K-член очень велик и имеет положительный знак.
Пока Паддок, Вирц и Лундмарк определяли K-член, Слайфер в одиночестве продолжал измерять все новые лучевые скорости. Число туманностей
Вероятно, войной и нарушением связей следует объяснить, почему ни Вирц, ни Лундмарк о теории де Ситтера в своих статьях тогда не упоминали.
В годы войны де Ситтер не только разработал приложение эйнштейновской теории к астрономии, но сделал и другое важнейшее дело, в конечном итоге подтолкнувшее изучение красного смещения.
В Нидерландах он мог получать литературу из Германии и делиться научными новостями со своими английскими коллегами, став посредником между учеными двух воюющих держав. Именно он в 1916 г. посылает Эддингтону статью Эйнштейна, знакомит его с общей теорией относительности и привлекает внимание к одyому из следствий теории, которое можно было бы проверить. Глава английской астрономии сразу же понял значение работы Эйнштейна и вместе с Дайсоном, тогдашним королевским астрономом, энергично берется за подготовку, несмотря на продолжающуюся войну, экспедиции для наблюдения полного солнечного затмения 29 мая 1919 г. Фотографируя звезды вокруг полностью затмившегося Диска Солнца, можно убедиться, отклоняется ли луч света, проходя около гравитирующего тела, как это предсказывала теория Эйнштейна.
При наблюдении затмений многое зависит от случайностей. Месяцы подготовки, затраты средств и времени, порой длительные путешествия, а результатов может не быть просто из-за плохой погоды, случайно набежавшего облачка. Так происходило и на этот раз. В день затмения на острове Принсипи у побережья Африки, куда прибыла одна из двух английских экспедиций, разразился сильнейший дождь. Погода стала чуть улучшаться, когда затмение уже началось и Солнце частично было закрыто Луной. Снимать затмение пришлось сквозь облака. И все же на нескольких снимках Эддингтон обнаружил следы звезд. Тщательные измерения показали, что звезды действительно смещены, причем так, как это требовали выводы Эйнштейна. Теория Эйнштейна триумфально подтвердилась. «Вся Англия только и говорит, что о Вашей теории,— писал Эддингтон в декабре 1919 г. Эйнштейну,— она произвела потрясающую сенсацию».
Весть о подтверждении теории относительности разнеслась по всему миру. Теперь нужно было искать и другие следствия теории, и работы де Ситтера указывали исследователям-эмпирикам нужное направление поиска. Необходимо было проверить, есть ли действительно связь лучевых скоростей с расстоянием далеких объектов.
Первым на эту задачу откликнулся Вирц. Весной 1924 г. он публикует статью «Де Ситтеровская космология и радиальные движения спиральных туманностей». Но откуда взять расстояния туманностей? Ведь в то время даже для ближайших туманностей — Андромеды и Треугольника — Хаббл еще не получил своих результатов. И Вирц решается взять за меру расстояний видимые диаметры туманностей, полагая, что истинные их размеры в среднем одинаковы. В этом предположении, чем дальше туманность, тем меньше будет ее видимый диаметр. Искомая связь между видимым размером и скоростью, а вернее намек на нее, обнаружилась: чем меньшие туманности он брал, тем больше оказывалась у них лучевая скорость. Но зависимость, полученная Вирцем, была не совсем той, что предсказывалась теорией. Там линейная зависимость должна наблюдаться между скоростью и расстояниями, а Вирц, вероятно, чтобы как-то смягчить слабую обоснованность своей гипотезы, вместо размеров туманностей решил брать их логарифмы. И еще одно мешало доверять полученному результату. Обнаружилось, что со скоростью коррелирует также и поверхностная яркость туманностей. У концентрированных
Летом того же года завершил подобное исследование и Лундмарк. И перед ним стояла та же трудная проблема расстояний туманностей. Естественно, приходилось снова опираться на гипотезу их одинаковых размеров. Ее Лундмарк дополнил предположением о том, что и светимости туманностей равны. Комбинируя два подхода, Лундмарк получил расстояния всех туманностей в относительных единицах. В качестве же самой единицы он принял расстояние туманности Андромеды. Но четкого, убедительного результата и на этот раз получить не удалось. «Нанося лучевые скорости против относительных расстояний,— заключал Лундмарк,— мы находим, что между двумя величинами может быть связь, хотя и не очень определенная».
Следующий, 1925 г. опять не принес ничего решающего. В работу по изучению движений туманностей, наконец, включился и американский астроном — сотрудник обсерватории Маунт Вилсон Густав Стрёмберг. Но и материал по лучевым скоростям, и предположение о видимом блеске туманностей как мере расстояния, оставались прежними. Опять получился не более чем намек на зависимость скорости от расстояния. «Мы не нашли достаточных оснований считать, что существует какая-либо зависимость радиальных движений от расстояния от Солнца» — четко и, вероятно, с разочарованием сделал Стрёмберг свой вывод.
Когда он уже закончил работу, неутомимый Лундмарк опубликовал новое исследование. На этот раз он попытался представить эффект красного смещения в кинематических уравнениях не обычным K-членом, а выражением с постоянным членом и двумя членами с расстоянием в первой и второй степенях. Искомые коэффициенты определились крайне неуверенно. Но, поскольку коэффициент при квадрате расстояния оказался отрицательным, Лундмарк заключил, что «у спиралей едва ли можно обнаружить лучевые скорости, превышающие 3000 км/с». Не прошло и пяти лет, как этот рубеж остался позади.
Последнюю, и в сущности — безуспешную попытку установить связь скорости с расстоянием туманностей, вновь опираясь на их видимые диаметры, сделал немецкий астроном Дозе в 1927 г.
Закон его имени
Любому серьезному исследователю становилось ясным, что дело не в малом числе известных лучевых скоростей или их недостаточной точности, а в том, как надежно установить расстояния туманностей. Ключ для решения этого кардинального вопроса был в руках Эдвина Хаббла. Он знал работы своих предшественников-астрономов и несомненно верил, что связь между скоростями и расстояниями туманностей существует.
Хабблу была известна и по крайней мере одна теоретическая работа, предсказывающая зависимость между красным смещением и расстоянием до галактик. Еще в 1926 г. — в статье «Внегалактические туманности» он рассматривал релятивистскую модель Вселенной де Ситтера и, вероятно, уже тогда задумал проверку предсказаний теоретиков, хотя всегда достаточно сдержанно относился к теории.
К концу двадцатых годов космологические модели, основанные на общей теории относительности, были полностью разработаны. Однако они оставались либо вовсе неизвестны астрономам, либо не вызывали у них сколько-нибудь заметного интереса. Вероятно, было несколько причин такого странного положения, когда теоретическое предсказание важнейшего явления природы долго оставляло почти безучастными тех, кто мог проверить предсказание. На первых порах, по-видимому, только Рессел и Шепли в письмах друг другу обсуждали связь теории де Ситтера с возможной зависимостью скорость—расстояние спиральных туманностей и даже шаровых скоплений, казавшихся тогда столь же далекими объектами.