Человек в экстремальных условиях природной среды
Шрифт:
Рис. 78. Изменение некоторых показателей крови в трехсуточном эксперименте (А — вязкость крови, Б — содержание гемоглобина в крови); 1 — до эксперимента, 2 — после эксперимента
Для компенсации водопотерь, вызванных усиленным потоотделением, возникает необходимость в увеличении суточной нормы воды. При этом водопотребление возрастает
По нашим данным, испытуемые в условиях пустыни при температурах воздуха до 42° при норме водопотребления 1,5 л в сутки уже к исходу третьих суток теряли, главным образом за счет эндогенной жидкости, в среднем 8,4 ± 0,3% от первоначальной массы тела (рис. 79).
Рис. 79. Динамика изменения массы тела в трехсуточном эксперименте в пустыне аппроксимировалась линией регрессии с наклоном 1,4 (г = 0,96, р < 0,05), т.е. при снижении массы тела на 6% снижение ОВТ происходило на 8,4% и т. д.
Определение общей воды тела (ОВТ) прямым методом с помощью радиоактивного изотопа водорода - трития (Н3), выполненное И. П. Бобровницким, показало, что в абсолютном отношении снижение содержания воды в организме (л) меньше величины теряемой массы тела (кг). За трехсуточный эксперимент потеря около 0,8 кг из числа общей потери массы тела (5,6 — 6,4 кг) была обусловлена утилизацией веществ и газообменом. Зависимость относительного снижения общей воды (т. е. истинной дегидратации) от дефицита массы тела
В условиях теплового воздействия наблюдается расширение периферических сосудов (Бабаева и др., 1979; Burch et al., 1966; Sadowski, Gellert, 1977). Увеличение периферического кровообращения происходит примерно на 15 мл/мин на каждые 0,01°/мин увеличения температуры крови (Benziger, 1959).
В этих условиях необходимость поддержать достаточно высокий объем циркулирующей крови (ОЦК) вполне очевидна. Многие исследователи доказывают, что на этапах гипер- или гиповолюмии поддержание объема ОЦК преобладает над осморегуляцией (Великанова, 1969; Керпель-Фрониус, 1964; Наточин, 1976, и др.).
Сгущение, а следовательно, уменьшение общего объема циркулирующей крови ведет к нарушению сердечно-сосудистой деятельности — снижению скорости кровотока, уменьшению ударного объема сердца (Ажаев, Лапшина, 1971; Fulton, 1956; Whittow, 1964).
Чтобы удержать минутный объем крови и артериальное давление на уровне, близком к нормальному, сердце вынуждено сокращаться чаще (Ротштейн, Таубин, 1952; Авазбакиева, 1954, 1958; Saltin, 1964). Учащение пульса связано также с изменением функционального состояния экстракардиальных центров вегетативной нервной системы под влиянием импульсов с периферических терморецепторов и в результате прямого воздействия нагретой крови на эти центры (Лемер, 1965; Whittow, 1958).
Этот процесс мы постоянно наблюдали во время экспериментов, причем нарастание частоты пульса шло почти параллельно с увеличением температуры тела (рис. 80). Интересно, что на вторые и третьи сутки эксперимента в утренние часы частота сердечных сокращений у испытуемых в покое была в некоторых случаях несколько ниже по сравнению с фоновой. Однако даже небольшая физическая нагрузка вызывала сердцебиение. Значительно учащался пульс при ортостатической пробе. Так, на третьи сутки эксперимента при переходе испытуемого из горизонтального положения в вертикальное частота пульса увеличивалась более чем в 2 раза.
Рис. 80. Изменение частоты пульса во время трехсуточного эксперимента в пустыне
Эти явления свидетельствовали о быстром возрастании нагрузки на сердечно-сосудистую систему и снижении приспособительных механизмов деятельности сердца в условиях высокой температуры окружающей среды. Обнаруженное на электрокардиограмме увеличение зубца Р при одновременном снижении амплитуды зубца Т, косонисходящем снижении сегмента S-T, принимавшем в сочетании с зубцом Т характерную корытообразную форму, свидетельствовало о процессах в мышце сердца, которые нередко регистрируются при коронарной недостаточности или при резком нарушении электролитного обмена.
В тесной связи с изменениями водного обмена находятся наблюдающиеся в пустыне нарушения электролитного равновесия. Недостаток солей в аварийном рационе, большие потери электролитов с потом и мочой приводят к отрицательному балансу таких элементов, как калий, натрий, хлор.
В умеренном климате при небольшом потоотделении организм помимо 12-15 г хлоридов натрия и калия, которые выводятся через почки с мочой, теряет с потом не более 2-6 г (Юнусов, 1960; Dill, 1938; Robinson, 1963, и др.).
Но при воздействии высоких температур, когда потоотделение возрастает до десяти и более литров, потери солей с потом могут даже превышать величину их экскреции с мочой. Возникающий дефицит электролитов может вызвать серьезные расстройства физиологических функций органов и систем даже при полном замещении водопотерь (Minard et al., 1961).
В большей степени выражены компенсаторные реакции, предупреждающие возникновение в организме натриевого дефицита: содержание хлористого натрия в поте снижается с 0,2-0,3% до 0,1-0,15% (Кравчинский, 1963), а в моче падает до минимума (Солуха, 1960; Матузов, Ушаков, 1964; Minard et al., 1961). Даже тепловая олигурия [11] , как полагают, не что иное, как своеобразный рефлекс, направленный не столько на сохранение воды в клетках и тканях, сколько на сбережение натрия, основная масса которого выводится с мочой (Тульчинский, 1965; Moore , Segar, 1966).
11
Уменьшение мочеотделения до пределов, необходимых лишь для удаления из организма продуктов обмена веществ.
Так, американские физиологи, проводя тепловые эксперименты в термокамере, установили, что у испытуемых при температуре воздуха 27° содержание натрия в моче снизилось за три часа с 25 до 14 ммоль/ч. При повышении температуры до 46°, а затем до 55° количество натрия снизилось до 8,4 и 7,6 ммоль/ч (Abramson et al., 1967).
В наших экспериментах в пустыне при ограничении водопотребления до 1-1,5 л при температуре окружающей среды 42-44° диурез падал с 1000-1100 мл до 300-400 мл уже на вторые сутки. Содержание натрия в моче уменьшалось со 145 до 15-20 ммоль/сутки, а калия — с 70 до 20-30 ммоль/сутки. Динамика этих процессов представлена на рис. 81.