Чтение онлайн

на главную - закладки

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

Также необычно то, что цвета всех звезд и галактик кажутся неправильными. Галактика, о которой вы точно знаете, что она имеет зеленый цвет, светится теперь в мягком рентгеновском диапазоне: гравитация Гаргантюа, направляя к вам излучение галактики, делает его более высокоэнергетичным, уменьшая длину волны с 5x10– 7 метра (зеленый) до 5х10– 9 метра (рентгеновские лучи). Подобным же образом внешний диск квазара 3C273, который как вы знаете, излучает инфракрасный свет с длиной волны 5х10– 5 метра, выглядит теперь зеленым с длиной волны 5х10– 7 метра.

После тщательной регистрации всех особенностей пятна, вы обращаете внимание на свой звездолет. Вы подозреваете, что здесь, так близко к горизонту

дыры, законы физики будут как-то изменяться, и эти изменения могут влиять и на вашу физиологию. Но нет. Вы смотрите на вашего первого помощника, Карес — она выглядит нормально. Второй помощник Брет тоже в норме. Вы дотрагиваетесь до них и не чувствуете изменений. Вы пьете стакан воды и, если не считать эффектов, связанных с большим десятикратным ускорением свободного падения, вода проходит нормально. Карес включает аргоновый лазер, появляется, как обычно, зеленый луч. Брет посылает импульсы рубинового лазера и измеряет время, которое требуется световому импульсу для прохождения пути от лазера до зеркала и обратно. Из этих измерений он вычисляет скорость света. Результат в точности такой же, что и в лаборатории на Земле: 299792 километров в секунду.

На звездолете все в порядке, все абсолютно так же, как если бы корабль покоился на поверхности массивной планеты с гравитацией в 10 g. Если бы не причудливое пятно прямо над вами и все поглощающая пустота вокруг, вы бы не узнали, что находитесь очень близко к горизонту черной дыры, а не в безопасности на поверхности планеты. Ну, или почти не узнали. Дыра искривляет пространство-время внутри вашего звездолета так же, как и снаружи, и с помощью достаточно точных измерений вы можете определить эту кривизну, например, измерить силу приливного растяжения между вашей головой и ногами. Но поскольку кривизна исключительно важна в масштабе горизонта длиной в 300 триллионов километров, ее влияние в масштабе вашего однокилометрового звездолета ничтожно. Приливная сила, порождаемая кривизной, между верхом и низом звездолета равна одной сотой от триллионной части земной гравитации (10– 14 g), а между головой и ногами еще в тысячу раз ее меньше!

Чтобы продолжить изучение этого замечательно нормального состояния, Брет выпускает из корабля капсулу с аппаратурой для измерения скорости света, состоящей из импульсного лазера и зеркала. Пока капсула движется к горизонту, этот прибор измеряет скорость, с которой световые импульсы проходят от лазера в носовой части капсулы до ее хвостовой части и обратно. Компьютер в капсуле передает по лазерному лучу на корабль: «299792 километров в секунду; 299792, 299792, 299792…». Цвет входящего лазерного пучка смещается от зеленого к красному, затем к инфракрасному, потом к микроволнам и радиоволнам, по мере того как капсула приближается к горизонту, а сообщение по-прежнему то же самое: «299792, 299792, 299792…». Затем лазерный луч исчезает. Капсула прошла горизонт, но ни разу за время падения не наблюдалось никаких изменений в скорости света внутри ее, не было также никаких изменений в законах физики, которые управляют работой электронных систем капсулы.

Эти экспериментальные результаты приносят вам большое удовлетворение. В начале XX века Альберт Эйнштейн провозгласил, исходя, в основном, из философских соображений, что локальные законы физики (законы в малых пространствах, там где можно пренебречь искривлением пространства-времени) должны быть те же самые, что и в остальной Вселенной. Это утверждение является фундаментальным принципом физики — принципом эквивалентности [33] . В последующие столетия принцип эквивалентности часто подвергался экспериментальной проверке, но никогда ранее его не проверяли так основательно, как в ваших экспериментах здесь, вблизи горизонта Гаргантюа.

33

Главы 2.

Вы и ваша команда устали от борьбы с 10-кратной гравитацией и начинаете подготовку к заключительной части путешествия, возвращению к нашей галактике, к Млечному Пути. Команда, конечно, пошлет отчет о ваших исследованиях Гаргантюа в начале обратного пути, но, поскольку звездолет сам будет двигаться почти со скоростью света, сообщение достигнет Млечного Пути, обогнав корабль менее чем на год по часам Земли.

Пока ваш звездолет уходит от Гаргантюа, команда проделывает аккуратные телескопические исследования квазара 3C273, расположенного над вами [34] (рис. П.5). Его струи — тонкие всплески горячего газа, вырывающиеся из ядра квазара, — огромны: 3 миллиона световых лет длиной. Наведя телескопы на ядро, команда видит источник мощи этих струй: плотный, горячий бублик из газа размером менее, чем в один световой год, с черной дырой в центре. Бублик, который астрофизики называют «диск аккреции», вращается вокруг черной звезды. Измеряя период его вращения, вы получаете массу дыры:

34

Глава 9.

П.5. Квазар 3C273. Черная дыра в два миллиарда солнечных масс, окруженная бубликом газа («диск аккреции») и двумя гигантскими струями, выстреливающими вдоль ее оси вращения.

2х109 солнечных масс, в 7500 раз меньше, чем Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Поток газа, затягиваемый гравитацией дыры, устремляется из бублика к горизонту. Когда газ приближается к поверхности горизонта, он ведет себя иначе, чем вы видели на других дырах, он образует завихрение вокруг дыры как в торнадо. Эта дыра должно быть быстро вращается! Ось волчка легко идентифицировать: это ось, вокруг которой образуются газовые вихри. Две струи, как вы замечаете, выстреливают как раз вдоль оси волчка. Они образуются как раз над северным и южным полюсами горизонта и берут энергию из вращательного движения дыры и бублика [35] , похоже на то, как смерч засасывают с земли пыль.

35

Главы 9 и 11.

Разница между Гаргантюа и 3C273 кажется удивительной: почему Гаргантюа, с его в тысячу раз большими массой и размером, не обладает таким круглым бубликом газа и гигантскими струями квазара? После телескопических исследований Брет находит ответ: раз в несколько месяцев звезда на орбите центральной дыры 3C273 подходит близко к горизонту и разрывается приливными силами дыры. Остатки звезды, массой примерно в 1 солнечную, разбрызгиваются в окрестности черной дыры. Постепенно внутреннее трение загоняет разбрызгивающийся газ внутрь бублика. Этот свежий газ компенсирует газ, которым бублик постоянно снабжает дыру и струи. Таким образом, бублик и струи поддерживают свои запасы газа и продолжают ярко светить.

Брет объясняет, что звезды могут близко подойти и к Гаргантюа. Но поскольку Гаргантюа намного больше 3C273, его приливные силы над горизонтом слишком слабы, чтобы разорвать звезду. Гаргантюа проглатывает звезды целиком, не разбрызгивая их внутренности в окружающий бублик. А без бублика Гаргантюа не может создать струи и другие особенности квазара.

Пока звездолет продолжает вырываться из гравитационных объятий Гаргантюа, вы обдумываете план возврата домой. К тому времени, как корабль достигнет Млечного Пути, Земля станет на 4 миллиарда лет старше по сравнению со временем, когда вы ее покинули. Перемены в человеческом обществе должны быть такими разительными, что вам уже не хочется возвращаться. Вместо этого вы и ваша команда решаете колонизировать пространство вокруг вращающейся черной дыры.

Вы полагаете, что так же как энергия вращения дыры в 3C273 питает струи квазара, энергия вращения меньшей дыры может быть использована как источник энергии для человеческой цивилизации.

Вам не хотелось бы прибыть к какой-нибудь выбранной дыре и обнаружить, что другие существа уже построили вокруг нее свою цивилизацию. Поэтому вместо того чтобы направить звездолет к уже существующей быстро вращающейся дыре, вы направляетесь к таким звездным скоплениям, в которых быстро вращающиеся дыры должны появиться вскоре после вашего прибытия.

Поделиться:
Популярные книги

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Запрети любить

Джейн Анна
1. Навсегда в моем сердце
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Запрети любить

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II