Черный лебедь. Под знаком непредсказуемости
Шрифт:
Рисунки 11 и 12 иллюстрируют эту идею: глядя на первый рисунок, можно подумать, что на землю упала крышка от объектива.
Вернемся к нашему краткому упоминанию побережья Британии. Если взглянуть на него с самолета, контуры не будут так уж отличаться от контуров, видимых с ближайшего обрыва. Изменение масштаба не меняет формы или степени гладкости.
Бисер перед свиньями
Но какое отношение фрактальная геометрия имеет к распределению капитала, величине городов, обороту финансовых рынков, потерям на войне или размеру планет? Давайте соединим точки.
Ключ
В 1960-е годы Мандельброт изложил свои идеи о ценах на предметы потребления и акции экономической элите, и экономисты-финансисты пришли в восторг. В 1963 году тогдашний декан бизнес-магистратуры университета Чикаго Джордж Шульц предложил ему место профессора. Это тот самый Джордж Шульц, который позже стал госсекретарем Рональда Рейгана.
Через некоторое время Шульц позвонил ему, чтобы отказаться от своего предложения.
Сейчас, через сорок четыре года, в экономике и социальной статистике ничего не изменилось, если не считать некоторых косметических поправок, учитывающих присутствие в мире лишь рядовой случайности, — и при этом нобелевские медали раздаются направо-налево. Появилось несколько статей с "доказательствами" неправоты Мандельброта, авторы которых не понимают того, о чем постоянно твержу я: выискивая периоды, лишенные редких событий, всегда можно получить данные, "подтверждающие", что стоящий за ними процесс — из разряда гауссовых. Точно так же можно выбрать день, в который не произошло убийств, и использовать его как "свидетельство" нашей безгрешности. Я повторю, что из-за асимметрии, свойственной индукции, проще оспорить невиновность, чем признать ее, и по той же причине проще оспорить гауссиану, чем принять. Фрактал же, напротив,
415
Степень неравенства будет одной и той же для всех шестнадцати секций графика. В гауссовом мире неравенство в богатстве (или любой другой количественной величине) убывает вблизи верхней границы, так что между миллиардерами должно быть большее равенство, чем между миллионерами, а между миллионерами — большее равенство, чем между представителями среднего класса. Это отсутствие равенства на всех уровнях состоятельности и есть, по сути, статистическое самоподобие.
труднее оспорить, чем принять. Почему? Потому что одно-единственное событие может опровергнуть утверждение, что перед нами — гауссиана.
В итоге четыре десятилетия тому назад Мандельброт вручил экономистам и пекущимся о своем резюме филистерам жемчуг, который они отвергли, потому что его идеи были
для них слишком хороши. Именно это самое и называют margaritas ante porcos — бисер перед свиньями.
В оставшейся части главы я расскажу, почему для объяснения большой доли случайностей мною предлагаются именно мандельбротовы фракталы, не обязательно в их точном употреблении. Фракталы — это вариант по умолчанию, приближение, основа. Они не решают проблему Черного лебедя и не превращают всех Черных лебедей в явления предсказуемые, но они значительно смягчают проблему Черного лебедя, делая эпохальные события постижимыми. (Черные лебеди становятся Серыми. Почему Серыми? Потому что чистая белизна есть только в гауссиане. Подробности позже.)
ЛОГИКА
Я показал в таблицах возрастания богатства в главе 15 логику фрактального распределения: если богатство удваивается с i (минимум) до 2 (минимум) миллионов, доля людей с таким капиталом урезается вчетверо, то есть налицо экспонента 2. При экспоненте i доля такого же богатства уменьшилась бы вдвое. Экспонента — это показатель степени, поэтому широко распространен термин степенной закон. Будем называть количество случаев, перекрывающих некий уровень, превышением: превышение 2 миллионов — это количество людей с состоянием больше 2 миллионов. Одно из основных свойств этих фракталов (или еще один способ выразить их основное свойство — масштабируемость) заключается в том, что отношение двух превышений будет отношением их ниж-
* Нетехнари могут пропустить текст отсюда до конца главы.
14-10770
них порогов*, возведенным в степень, равную минус экспоненте.
Проиллюстрируем это. Положим, вы "думаете", что только 96 названий книг в год разойдутся тиражом более 250 ооо экземпляров (как это было в прошлом году), и, "по-вашему", экспонента должна быть примерно 1,5. Простым умножением 96 на (500 ооо / 250 ooo) I,5 вы можете определить, что примерно 34 названия разойдутся тиражом более 500 ооо экземпляров. Пойдя далее, мы установим, что около 8 книг будут проданы в количестве более миллиона экземпляров: 96 х (i 000 ооо / 250 ооо)-15.
Таблица № 2. Предполагаемые экспоненты для разных явлений
Явление
Предполагаемая экспонента (грубое приближение)
Частота употребления слов Количество посещений веб-сайтов Количество книг, проданных в США Принятые телефонные звонки Сила землетрясений Диаметр лунных кратеров Интенсивность вспышек на Солнце Интенсивность войн Чистый капитал американцев Количество людей с данной фамилией Население американских городов Движения рынка Размеры компаний Количество людей, погибших
1,2 1,4 1,5 1,22 2,8 2,14 0,8 0,8 1,1
1,3
3 (или меньше) 1,5
2 (но, возможно, гораздо меньше)
при терактах
Источник: МЭ.Дж. Ньюман (2005) и собственные вычисления автора.
Давайте рассмотрим разные выверенные экспоненты для
всевозможных явлении.
*
Симметрия позволяет нам брать за точку отсчета и верхние пороги.
Но прежде всего следует предупредить, что эти экспоненты ни в коем случае не точные показатели. Почему, мы увидим через минуту, но пока отметим, что этих параметров мы не наблюдаем; мы их просто угадываем или вводим для статистики, и поэтому временами бывает трудно узнать истинные параметры — если они вообще существуют. Сначала поговорим о практической роли экспоненты.
Таблица 3. Значение экспоненты
Экспонента
Доля верхнего 1 %
Доля верхних 20%
1
99,99%"
99,99%
1,1
66%
86%
1,2
47%
76%
1,3
34%
69%
1,4
27%
63%
1,5
22%
58%
, 2
10%
45%
2,5
6%
38%
3
4,6%
34%
* Понятно, что 100% в конечной выборке не наблюдается.
<