Читая каменную летопись Земли...
Шрифт:
Другой интересный феномен, наблюдаемый уже в горных районах Дагестана, — это септариевые конкреции — крупные круглые шары, словно ядра торчащие в вертикальных откосах над дорогами. Они возникли в песчаниках и в близких к ним породах — алевролитах альбского возраста. Исследования ученых показали, что речь идет о конкрециях — стяжениях, сложенных железистым карбонатом (сидеритом) и сформировавшихся в песчаниках уже после погружения в недра на стадии диагенеза, с которой связано превращение осадка в породу.
Что такое глина?
Глина в повседневной жизни у многих людей ассоциируется с обыкновенной липкой грязью. Чтобы смыть ее с обуви, надо приложить изрядные усилия. Это досаждающее
Важнейшие качества глин — это связность и пластичность. Если другие рыхлые отложения легко распадаются на отдельные ингредиенты (зерна, обломки, комочки), то агрегаты, составляющие глину, как бы сцеплены друг с другом и, будучи разъединенными, легко связываются вновь при контакте. Хотя глина не обладает магнитными свойствами, на ее поверхности легко адсорбируются разные тонкие частицы, а сама она запросто пристает к нашим рукам и одежде.
Еще одним качеством, отличающим глину от других осадочных образований, является способность размокать в воде. Если мы размешаем комок глины в стакане воды, она быстро помутнеет и будет оставаться такой в течение многих часов, а иногда и дней. Любой же другой осадок, размешанный в воде, почти сразу оказывается на дне. Чтобы заставить опуститься глинистые частицы, приходится добавлять в воду вещества — коагулянты, например сильные электролиты. В лабораториях глинистую суспензию осаждают в центрифугах.
Необычна и способность некоторых глин к разбуханию. Если нанести на поверхность препарата из такой глины глицерин или этиленгликоль — тяжелые неполярные жидкости, то этот препарат на глазах начинает вспухать. Объем некоторых разновидностей глин при этом способен возрасти в несколько раз.
Пластичностью можно объяснить способность глины сохранять приданную ей форму. Кто из нас не лепил в детстве забавных зверушек из пластилина? А ведь в его основе лучшие сорта формовочных глин. Можно еще много рассказывать о специфических свойствах глин и слагающих их минералов, которые определяют широкий спектр применения этих образований в народном хозяйстве. Вначале, однако, полезно познакомиться с их внутренней структурой, определяющей отмеченные выше необыкновенные качества.
Глины и производные от них глинистые породы — аргиллиты, сланцы, филлиты — чрезвычайно широко распространены в осадочной оболочке Земли. Они составляют от 50 до 70 % ее объема. Это связано с высокой устойчивостью глинистых минералов в условиях земной поверхности и относительно глубоких ее недр (7-10 км). Подобная устойчивость обусловлена лабильностью кристаллической решетки слоистых силикатов, к которым принадлежит большинство глинистых минералов, ее способностью к трансформациям при изменении температур и давлений, других физико-химических параметров среды. Конечным продуктом на пути превращения глинистых минералов при погружении в недра являются слюды. Последние, отличаясь значительной устойчивостью к высоким температурам и давлениям, в поверхностных условиях, как правило, легко преобразуются обратно в глинистые минералы.
Кристаллическая решетка слоистых силикатов устроена наподобие слоеного торта: примерно одинаковые по толщине его листы наложены один на другой, а между ними помещается «начинка». В структуре глинистых минералов роль теста играют двух-, трехэтажные пакеты, построенные октаэдрами и тетраэдрами. И те и другие образуют самостоятельные слои, жестко сцепленные между собой. Наиболее широко распространены две комбинации таких слоев-сеток: сочетание тетраэдрического и октаэдрического слоев, формирующих двухслойный тип пакета, и сочетание двух тетраэдрических сеток с октаэдрической между ними, что позволяет говорить о трехслойной структуре единичного пакета.
Не разбирая подробно, как устроены тетраэдры и октаэдры, отмстим, что в вершинах тех и других находятся анионы, тогда как внутри каждой (или почти каждой) ячейки расположены катионы. Анионы — обычно жестко связанные друг с другом О—2 и ОН— — играют роль стенок в блочном доме. Некоторые даже являются общими для соседних «квартир». В качестве же «постояльцев» в этих «квартирах» выступают двухвалентные магний и железо, трехвалентные железо и алюминий, а также четырехвалентный кремний. Для первых трех из перечисленных катионов в качестве жилища годятся только октаэдры, для последнего, кремния, — только тетраэдры. Лишь алюминий может располагаться (в определенном количестве) и в тех и в других.
Интересно, что если «квартирки» в тетраэдрических этажах все до одной заняты «жильцами», то октаэдрический этаж может быть полностью заселен только двухвалентными катионами — Fe2+ и Mg2+. Трехвалентные алюминий и железо требуют для себя улучшенных условий и размещаются лишь в двух из каждых трех «комнат» октаэдрического этажа. Это обусловлено необходимостью соблюдения относительного баланса отрицательных и положительных зарядов в каждом домике-пакете. Если оно не будет соблюдено, домик рассыпется. Естественно, что при преобладании трехвалентных катионов в октаэдрах общий баланс зарядов поддерживается меньшим их количеством, чем в случае, если «квартирантами» в этом этаже будут двухвалентные железо и магний.
Минералы, в структуре которых находятся пакеты-домики повышенной комфортности (с заселенными на две трети комнатами в октаэдрическом этаже), получили название диоктаэдрических. Соответственно минералы с пакетами, заселенными «под завязку», называются триоктаэдрическими. Это важные понятия, так как и ди- и триоктаэдрические минералы образуются в строго определенных физико-химических условиях среды на поверхности Земли или в ее недрах.
В отличие от анионов, изъятие которых из структуры приводит к ее разрушению, катионы обладают большей свободой. Например, они могут в определенных условиях меняться «квартирами» или выезжать из них с последующим заселением новыми «жильцами». Эти изменения в составе катионов называются изоморфными замещениями. Так, Mg2+ может заместиться Fe2+ и, наоборот, Аl3+ нередко сменяется Fe3+. Речь в данном случае идет о более просторных, октаэдрических «квартирах». Что же касается тетраэдров, то тут обмен жилплощадью может происходить только между кремнием и алюминием. Последний отличается неприхотливым нравом и частично замещает кремний при постепенном погружении глинистых отложений в недра, где этому четырехвалентному катиону становится тесно в сузившейся каморке — тетраэдре, и он стремится покинуть ее.
Вот таковы основные правила общежития в домиках-пакетах, которыми составлены глинистые минералы. Если вернуться к сравнению структуры глин со слоеным тортом, то придется упомянуть и о «начинке», находящейся между отдельными пакетами. В этом отношении глинистые минералы выпечены по разным рецептам. В одних роль «крема» играет обособленный октаэдрический слой. Таковы минералы группы хлорита. В других — это слои из упорядоченных молекул воды с обменными катионами (смектиты), в третьих — катионы калия (иллиты или гидрослюды). Четвертая группа минералов — каолинит, диккит, галлуазит вообще лишены «крема». Это — «сухое печенье». Отдельные пакеты, а они, кстати, имеют необычное двухслойное строение (один тетраэдрический на один октаэдрический слой), сцеплены вместе ван-дер-ваальсовыми силами чисто электрической природы (рис. 1). Впрочем, во многих каолинитах отмечается присутствие небольшого количества сорбированной воды и обменных катионов.