Что такое информация?
Шрифт:
2.1.2. Дискретная математика
Парадоксально, но до XIX века никто не обратил внимания на тот факт, что реальный мир состоит из дискретных объектов и понятие непрерывной функции не имеет никаких аналогов в реальном мире.
Бурное развитие математики в XIX веке заставило обратить внимание на необходимость логического обоснования математики, то есть необходимо было критически пересмотреть ее исходные положения (аксиомы). Как мы уже отмечали, критерием правильности математики может быть только ее непротиворечивость. Однако до сих пор идет сильное отставание математики в строгом логическом обосновании многих математических методов,
Только в конце XIX века сложился стандарт требований к логической строгости развития математических теорий. Этот стандарт основан на теоретико-множественной концепции строения любой математической теории. С этой точки зрения любая математическая теория имеет дело с дискретным множеством объектов, связанных между собой некоторыми логическими отношениями. Новый стандарт позволил не только обосновать многие математические теории, но и систематизировать их. Однако вопрос цели в математике по-прежнему оставался открытым, вызывая головную боль у философски думающих математиков.
Тем не менее, в конце XIX века определился круг интересов так называемой дискретной (конечной) математики, основные разделы которой (теория матриц, теория групп, теория множеств, математическая логика, теория вероятностей, теория алгоритмов и т. д.) разрабатывались еще в XVII–XVIII веках одновременно с элементами непрерывной математики.
Более того, элементы дискретной математики возникли в глубокой древности. Типичными для того периода были задачи, связанные со свойствами целых чисел – Диофант (3 век), и приведшие затем к созданию теории чисел – Л. Эйлер (1707–1783), К. Гаусс (1777–1855).
Позже, в основном в связи с игровыми задачами, появились элементы комбинаторного анализа и дискретной теории вероятностей – Б. Паскаль (1623–1662), П. Ферма (1601–1665). Затем возникли важнейшие понятия алгебры, такие как группа, поле, кольцо и др. – Ж. Лагранж (1763–1813), Э. Галуа (1811–1832), имевшие, по существу, дискретную природу.
В середине 19 века Л. Эйлер заложил основы теории графов, которая в дальнейшем привела к созданию эффективных методов решения транспортных задач. Тогда же появилась теория матриц – У. Гамильтон (1805–1865), А. Кэлли (1821–1895), К. Вейерштрасс (1815–1897).
Теорию множеств разработал Г. Кантор (1845–1918), которая встретила со стороны его современников резкое сопротивление, но впоследствии оказала большое влияние на развитие математики. Теория множеств является фундаментом ряда новых математических дисциплин. Постепенно теоретико-множественные методы находят все большее применение и в классических частях математики: дифференциальные уравнения, вариационное исчисление, теория вероятностей и др. Однако в вопросах обоснования математики, теория множеств сама нуждается в обосновании применяемых в ней методов рассуждения. Более того, все логические трудности, связанные с обоснованием математического учения о бесконечности, при переходе на точку зрения общей теории множеств, приобретают лишь большую остроту.
Стремление к строгости математических рассуждений привело к появлению математической логики – Дж. Буль (1815–1864), О. Морган (1806–1871), Э. Пост (1897–1954), И.И. Жегалкин (1869–1947), К. Гедель (1906–1978).
Наибольшего развития дискретная математика достигла в связи с запросами практики, приведшими к появлению новых наук: кибернетики, теории кодирования, теории алгоритмов, теории автоматов и др. – Н. Винер (1894–1964), К. Шеннон (1916–1989), А. Черч (1903–1992), А. Тьюринг (1912–1954). Наконец, появился запрос и на создание теории информации.
Само деление математики на непрерывную и дискретную достаточно условно, так как в настоящее время происходит интенсивный обмен идей и методов между ними. Правильней было бы говорить о становлении в XX веке новой современной математики, существенно отличающейся от классической математики XVII–XIX вв., хотя, к сожалению, еще большинство школ и вузов придерживаются методики преподавания математики по канонам, не изменившимся со времен Архимеда.
В XX веке появились новые направления в науке, требующие своих специфических математических теорий, такие, как информатика, программирование, вычислительные методы с применением ЭВМ. От физики поступил заказ на развитие и обоснование суперструнных теорий, где пришлось отказаться от основного понятия классической физики и математики – понятия математической точки. Можно сказать, что на рубеже XXI века математика, уже вместе с физикой, переживает очередной острейший кризис, совпадающий с кризисом мировоззрения и самого человечества.
Первичной основой современной математики служит теория множеств. Понятие множества, строго говоря, не определяется. Приближенно множеством можно считать любое собрание объектов, мыслимое как единое целое.
Категории – это совокупность однотипных математических объектов и морфизмов между этими объектами. Теория категорий играет в математике роль параллельную и дополнительную к роли теории множеств.
Топология – раздел математики, имеющий своим предназначением выяснение и исследование идеи непрерывности. В настоящее время понятие непрерывного отображения предполагает только, что точки и множества рассматриваемой фигуры могут находиться в некотором интуитивно ясном отношении близости, отличном от отношения принадлежности. Такие фигуры называются топологическими пространствами.
Алгебраические системы – это множество с определенными на нем операциями и отношениями. Алгебраическая система называется алгеброй (общей, универсальной, абстрактной), если множество отношений пусто, и – моделью, если пусто множество операций.
Математическая логика – раздел математики посвященный изучению доказательств оснований математики. На основе математической логики были построены различные системы аксиоматической теории множеств. Наиболее известная из них – система Цермело-Френкеля. Прикладное значение математической логики – конструкция ЭВМ.
Наиболее часто мы сталкиваемся с понятиями операции, отношения и отображения.
Понятие операции интуитивно ясно на примере хорошо известных операций сложения и умножения. Это – бинарные операции. Примером унарной операции является отрицание.
Отношения устанавливают связь между множествами.
Отображения – это закон, по которому каждому элементу некоторого заданного множества сопоставляется однозначно определенный элемент другого заданного множества. Фундаментальными понятиями математики являются также понятия ассоциативности, коммутативности и дистрибутивности.