Что такое полупроводник
Шрифт:
Вы думаете, мы уже полностью раскрыли внутренние причины проводимости кристалла? Нет. Недаром мы отдавали закись меди на очистку в химическую лабораторию.
То, о чем вы до сих пор читали, относится только к идеально чистым материалам. В реальных же полупроводниках, где обязательно есть примеси, хотя, может быть, и очень небольшие, дело обстоит сложнее.
{19}
АТОМЫ-ГОСТИ
Вспомним знакомый нам слой закиси меди на проволочке, побывавшей в горячей печи.
Какие примеси он имел до того, как попал на очистку в лабораторию?
Из
С наружной стороны он был наверняка загрязнен лишними атомами кислорода. Они попали туда из воздуха. С внутренней стороны (той, что прилегает к металлу) в закись вкраплены лишние атомы меди.
Сравним, что лучше пропускает электрический ток: идеально чистая закись или же загрязненная небольшим количеством атомов меди?
Опыт покажет, что добавка «лишних» атомов меди резко увеличивает электропроводность полупроводника. Чем это объяснить? Внешние электроны пришлых атомов меди обретают свободу гораздо легче, чем внешние электроны атомов закиси; причем освобождение электронов из медных атомов примеси не сопровождается появлением дырок. На опустевшие места в пришлых медных атомах электроны атомов закиси не попадают, им на это не хватает энергии. Таким образом, «лишние» атомы меди служат источниками толькосвободных электронов, которые и играют в таком полупроводнике роль основныхносителей тока. Подобные примеси называются донорными [1] , а включающие их полупроводники — электронными. {20}
1
От латинского слова «дарящий».
Итак, излишек меди увеличил проводимость закиси. Пожалуй, такой исход опыта не явился для нас неожиданностью: к полупроводниковому материалу подбавилось немного металла, и резонно было ожидать, что электропроводность вещества от этого улучшится. Но если так, то, вероятно, добавка кислорода, который не проявляет никаких свойств металла, должна уменьшить электропроводность закиси?
Ничего подобного!
Поставив опыт, мы убедимся, что этого не наблюдается. Малая примесь атомов кислорода не только не снижает, а, наоборот, значительно повышает проводимость закиси — почти так же, как и добавка атомов меди. Опять загадка!
Разгадывается она, впрочем, довольно легко.
ЛОВЦЫ ЭЛЕКТРОНОВ
Мы помним: не только свободные электроны могут быть в полупроводнике передатчиками тока. Ведь такую роль способны играть и дырки — места, оставленные электронами. И оказывается, избыточными атомами кислорода в закиси меди создаются дырки. Как это происходит?
«Лишний» атом кислорода не только крепко держит собственные электроны. Он втягивает на свою внешнюю оболочку электроны со стороны. Электрону, связанному с атомом закиси, гораздо легче переместиться на пришлый атом кислорода, чем совсем вырваться на волю. Но выловленные примесью кислорода электроны оставляют бреши, пустые места, в электронных связях между атомами закиси. В полупроводнике появляется избыток этих не занятых электронами мест — излишек дырок. Они и становятся здесь основными носителями тока.
Полупроводники, наделенные такими примесями, {21} физики называют дырочными.А
Как мы видели, закись меди может быть и электронным и дырочным полупроводником — смотря по тому, что к ней примешано. Это относится и ко всем другим полупроводниковым материалам. Выходит, атомы-гости очень сильно влияют на характер и поведение атомов-хозяев. Часто самые ничтожные дозы примесей резко меняют электрические свойства полупроводника. Электропроводность повышается в десятки, сотни, тысячи, даже в сотни тысяч раз! Исключительно возрастает зависимость ее от температуры и других внешних воздействий.
2
От латинского слова «принимающий».
Но главное вот что: вводя в очищенный полупроводник те или иные примеси в определенных количествах, человек может сознательно управлять электрическими свойствами подобных материалов. «Лишние» атомы оказываются совсем не лишними. В конечном счете именно эта возможность повела к созданию великого множества полупроводниковых приборов и устройств.
О ПОДЛИННОЙ ТЕОРИИ
Прежде чем рассказывать дальше, автор вынужден принести извинение.
Для наглядности и понятности объяснений пришлось несколько упростить изложение физической сущности процессов. На самом деле ученые учитывают здесь многое, о чем нам пришлось умолчать.
Герой социалистического Труда академик Абрам Федорович Иоффе
Существует, в частности, на первый взгляд странное условие: электрон обладает противоречивыми свойствами: он ведет себя не только как частица, но и как волна. Этот факт трудно сразу осознать, физики к нему попросту привыкают — ничего не поделаешь, такова уж особенность {22} мира мельчайших частичек. Но доказано это совершенно неопровержимо.
И вот если учесть волновые свойства электрона и другие специфические особенности мельчайших частиц — их связи друг с другом, их взаимное влияние,— то все, о чем вы читали, удастся изложить совершенно строго, с точным количественным расчетом.
Такая работа очень трудна. На пути физиков появляется масса непредвиденных препятствий. Чтобы освободиться от них, приходится выдвигать разнообразные гипотезы, проводить огромные вычисления, ставить сложные опыты.
Вот почему создание теории полупроводников — замечательная победа науки. Это итог долголетних исканий многих исследователей. Немалая роль среди них принадлежит советским физикам во главе с Героем Социалистического Труда академиком Абрамом Федоровичем Иоффе.
Сейчас теория полупроводников продолжает развиваться и совершенствоваться.
ПОЛУЧЕНИЕ ПОЛУПРОВОДНИКОВ
Итак, наука разгадала секреты электропроводности полупроводников. Стала понятной роль свободных электронов и дырок, а также причина влияния примесей на свойства полупроводниковых материалов.
Что требуется сделать, чтобы получить полупроводник с теми или другими заранее «заказанными» свойствами? {23}
Теория подсказывает: надо сначала тщательнейшим образом очистить материал, а потом чуть «загрязнить» его специально подобранным веществом.