Цикл космических катастроф. Катаклизмы в истории цивилизации
Шрифт:
В сверхновой типа II твердое ядро, в котором содержится только несколько процентов от общей массы звезды, очень быстро сжимается в виде «ударной волны внутрь», нагреваясь до 5 миллиардов градусов и генерируя больше энергии, чем генерировала звезда за все время своего предыдущего состояния. Эта энергия взрывообразно расширяется, производя «ударную волну наружу» и посылает большую часть массы звезды в космос в виде гигантской, похожей на оболочку, ударной волны, как показано на илл. 14.1. Оставшаяся часть ядра так сильно сжата, что протоны и электроны сливаются вместе, образуя нейтроны; ядро становится нейтронной звездой —
Когда взрыв выбрасывает вещество звезды в межзвездное пространство, он вызывает ядерный синтез, от чего формируются вое элементы, включая уран. Пролетая в космосе, эти элементы в конечном счете создают новую солнечную систему, подобную нашей собственной.
В отличие от сверхновых типа I, которые можно наблюдать во всех галактиках с одинаковой вероятностью, сверхновые типа II ограничены областью спиральных галактик с их высокой плотностью звезд — таких, как Млечный Путь. Из-за того что сверхновые типа II взрываются столь мощно, они представляют собой угрозу каждой звездной системе, которая находится от них неподалеку. Солнце и Земля двигаются по галактике независимо от других звездных кластеров, в результате чего в последние несколько миллионов лет мы прошли через одно из ответвлений галактики. Это движение привело нас в один из самых опасных ее регионов в отношении образования сверхновых.
После того как сверхновая типа II взорвалась, большая часть массы первоначальной звезды расходится, подобно пузырю, в пространство с колоссальной скоростью, обычно 6200 миль в секунду (10 000 км/час). Этот расширяющийся «пузырь» гонит вперед газ межзвездного пространства, образовавшийся от солнечного ветра прежней звезды, а также находящиеся в космосе остатки давно исчезнувших звезд. Вещество, которое приводится в движение оболочкой «пузыря», может быть по своему объему больше, чем масса первоначальной звезды.
Позднее выброшенная оболочка охлаждается и становится тоньше. Движение вещества, которое она гонит, замедляется; в свою очередь, элементы взорвавшейся звезды замедляются оболочкой. Поскольку плотность газа и напряженность магнитного поля в разных частях галактики различна, оболочка начинает искажаться…
Через несколько тысяч лет остатки сверхновой переходят в стадию «снежного плуга»: фронт ударной волны становится медленнее и плотнее и проходит через пространство с постоянной скоростью, словно снежный плуг. В конечном счете эта ударная волна расходится в открытом пространстве.
Именно эту модель ученые используют, чтобы описать распространение вещества сверхновых типа II, но она является в большей мере теоретической, поскольку в ее поддержку есть слишком мало экспериментальных данных. Подробным исследованием сверхновых наука занялась сравнительно недавно, и похоже, что поведение сверхновых значительно варьируется в зависимости от местной межзвездной среды и динамики каждой сверхновой.
ВОПРОС: Вы утверждаете, что выброшенное вещество сверхновой образует кометы, похожие на скопления, в то время как расширяющаяся оболочка является всего лишь облаком элементов с исключительно низкой плотностью? Как вы можете объяснить идею скоплений?
Хотя и привлекательно представление, что сверхновая производит равномерную оболочку, которая одинаково распространяется во всех направлениях, оно не дает истинной картины. Взрыв сверхновой, как правило, начинается не в центре ядра, а в стороне от него. Из-за того, что взрыв не сбалансирован, нейтронная звезда после взрыва начинает двигаться со своего прежнего места с большой скоростью.
То же происходит и с газами в теле звезды, Согласно подсчетам группы астрофизиков Университета Чикаго и Научного института космических телескопов. Джим Труран утверждает (при личной встрече в 2005 году), что, согласно анализу чикагской группы, взрыв типа 1 а производит комки вещества, которые летят прочь от места взрыва — во многом таким же образом, как и оставшееся ядро.
Один из исследователей, Майкл Шара из Научного института космических телескопов, сказал: «Основываясь на этих наблюдениях, мы можем прийти к выводу, что наши привычные представления о том, как должна выглядеть оболочка сверхновой, совершенно неверны. [Преобладает] взгляд, что сверхновая взрывается во всех направлениях, причем ее вещество летит с одинаковой скоростью, так что образуется довольно гладкое облако. Вместо этого мы видим мириады отдельных узлов [комков]» (Из Шара, «Астрономический журнал», 114,1997, с. 258).
Это наблюдение напоминает атомный или динамитный взрыв, в котором осколки с разной скоростью разлетаются неровным слоем во многих направлениях. Вдобавок, по мере того как расходится ударная волна от взорвавшейся звезды, ассиметричное пылевое облако, которое его окрркает, может сжаться, создавая намного более плотные области газа. Это наблюдалось во время взрыва сверхновой SN1987, показанного на илл. 14.2. Яркие области в кольце интерпретируются как более объемные комки, раскаленные в результате столкновения с ударной волной.
Там где расширяющееся облако проходит близко к другой звездной системе, гравитация этой системы приводит к концентрации этого облака в комки. Также надо заметить, что даже если притяжение между частицами сверхновой слабо, гравитация все равно медленно сближает их. Примерно таким же образом формируются кометы и астероиды, такие, как комета Галлея и комета Темлеля-Таттла, в которую врезался космический зонд НАСА «Дип роуб». Он показал, что комета представляет собой сверхлегкий шар из собранного в космическом пространстве материала, едва удерживаемый силами притяжения. По мере того как облако от сверхновой проходит миллионы миль сквозь пространство, в нем тоже начинают собираться комки, оставляя между собой пустое пространство. Б этом случае можно предположить, что наша Солнечная система бомбардируется объемными комками, если попадает в районы распространения ударной волны.