Дао физики
Шрифт:
Во многих процессах столкновений, находящих применение в физике высоких энергий, часто имеют место и сильные электромагнитные, и слабые взаимодействия, в результате чего возникают длинные цепочки последовательных превращений частиц. Частицы, первоначально принимавшие участие в столкновении, аннигилируют, образуя несколько новых частиц, которые тоже проходят несколько стадий распада, прежде чем превратиться в устойчивые частицы.
На рис. 35 представлена сложная последовательность столкновений и распадов частиц: отрицательно заряженный пион (п-) проникает в пузырьковую камеру слева, сталкивается с протоном, то есть с ядром атома водорода, который уже находился внутри камеры; обе частицы аннигилируют, в результате чего образуется нейтрон (n) или два каона (К— и К+); нейтрон улетает, не оставляя следа; каон сталкивается с другим, находящимся в камере протоном, обе частицы аннигилируют, образуя ламбду (Л) и фотон (гамма).
Здесь изображена одна из таких цепочек возникновений и исчезновений частиц. Обратите внимание на тот факт, что следы в пузырьковой камере могут оставлять только заряженные частицы; под воздействием магнитного поля они отклоняются в различных направлениях, в зависимости от знака заряда: положительные — по часовой стрелке, а отрицательные — против часовой стрелки. Этот график представляет собой прекрасное доказательство того факта, что на уровне частиц материя характеризуется колоссальной слитностью и взаимопроницаемостью, а также достоверное и наглядное изображение энергетических каскадов, сопровождающих образование и уничтожение различных структур, или, говоря другими словами, различных частиц.
Особенно поразительными представляются такие случаи, когда лишенный массы, но наделенный большим количеством энергии фотон, который никак не обнаруживает своего присутствия в пузырьковой камере, внезапно взрывается, образуя пару заряженных частиц (позитрон и электрон), которые тут же начинают двигаться по расходящимся дугам. На рисунке 36 запечатлен процесс, в котором образование пары противоположно заряженных частиц из электрически нейтрального фотона происходит целых два раза.
На рис. 36 представлена последовательность событий, приводящих к образованию двух электронно-позитронных пар: антипротон (р-) снизу проникает в пузырьковую камеру, сталкивается с одним из протонов и образует я+ (след, уходящий влево) и я— (след, уходящий вправо), а также два фотона (гамма), каждый иэ которых, в свою очередь, распадается на электронно-позитронную пару: позитроны (е+), улетающие направо, и электроны (е-) — влево.
Чем значительнее объем энергии, изначально принимающей участие в процессе столкновения, тем больше частиц может образоваться. На рис. 37 изображено столкновение между антипротоном и протоном, в результате которого возникает восемь пионов.
Для того, чтобы разогнать частицы до достаточно большой скорости, то есть, иными словами, для того, чтобы сообщить им достаточно большое количество энергии, используются мощные ускорители частиц. В большинстве случаев природные явления, происходящие на Земле, имеют более низкие энергетические характеристики, вследствие чего тяжелые частицы редко образуются на Земле в естественных условиях. В открытом космосе нас ждет совершенно иное положение дел: в центре звезд сосредоточены крупные скопления субатомных частиц, между которыми постоянно происходят естественные столкновения, аналогичные столкновениям внутри ускорителей современной экспериментальной физики. В некоторых звездах эти процессы порождают чрезвычайно мощное электромагнитное излучение, которое может принимать форму радиоволн, световых волн и рентгеновских лучей. Для астрономов это излучение представляет собой основной источник знаний и информации о Вселенной. Таким образом, межзвездное, как впрочем, и межгалактическое, пространство оказывается насыщенным электромагнитными излучениями различных частот, то есть фотонными потоками, обладающими различными запасами энергии. Тем не менее, фотоны — не единственные частицы, которые постоянно бороздят просторы космоса. «Космическое излучение» состоит не только из фотонов, но также и из тяжелых частиц, механизм образования которых до сих пор не вполне ясен. Большинство этих частиц составляют протоны; некоторые из них обладают очень большими запасами энергии, намного превышающими те предельные показатели, которые позволяют достичь самые мощные ускорители частиц.
Попадая в атмосферу Земли, эти высокоэнергетические «космические лучи» сталкиваются с ядрами атомов, составляющих молекулы различных атмосферных веществ, образуя огромное множество вторичных частиц, которые либо подвергаются независимому распаду, либо вступают в дальнейшие взаимодействия — столкновения. Превращения частиц продолжаются до тех пор, пока очередные из них не достигнут Земли. Так, один-единственный протон, попавший в атмосферу Земли, может породить целый каскад явлений, в ходе которых его исходная кинетическая энергия превратится в целый ливень разнообразных частиц и будет постепенно поглощаться по мере продвижения претерпевающих непрестанные изменения частиц к поверхности Земли. То же самое явление, наблюдаемое в ходе экспериментов физики высоких энергий по столкновению частиц, происходит естественным путем в атмосфере нашей планеты, И причем в последнем случае его протекание характеризуется гораздо большей интенсивностью, чем во время экспериментов. Непрерывный
В мире частиц могут происходить не только такие процессы возникновения и уничтожения частиц, которые поддаются детекции при помощи фотографий пузырьковых камер. Важное место среди явлений субатомного мира занимают и процессы возникновения и аннигиляции виртуальных частиц, участвующих в обменных процессах, опосредующих взаимодействия между частицами. Виртуальные частицы существуют не настолько долго, чтобы можно было подтвердить их присутствие экспериментальным путем. Возьмем, к примеру, возникновение двух пионов в результате столкновения протона и антипротона. Пространственно-временной график для данного процесса будет выглядеть следующим образом (см. рис. 38). Не забывайте о том, что время на этих графиках имеет направленность снизу вверх. На этом графике изображены мировые линии протона (р) и антипротона (р-) которые сталкиваются друг с другом в некоторой точке пространства-времени, аннигилируя и образуя два пиона (п+ и п-). И все же этот график не вполне соответствует действительности. Взаимодействие между протоном и антипротоном можно представить в виде процесса обмена виртуальным нейтроном, изображенного на рис. 39.
Точно таким же образом процесс, зафиксированный на рис. 40, приводящий к образованию четырех пионов и результате столкновения протона и антипротона, тоже может быть представлен в виде более сложного обменного процесса, в ходе которого происходит образование и аннигиляция трех виртуальных частиц — двух нейтронов и одного протона.
Нужно учитывать тот факт, что графики в этой части главы довольно схематичны и не дают представления о точных величинах углов между линиями движения частиц.
Соответствующая фейнмановская диаграмма будет выглядеть примерно так (см. рис. 41):
Эта диаграмма чисто схематическая, и не показывает точных углов разлета частиц. Отметим также, что изначальный протон, находящийся в пузырьковой камере, не виден на фотографии (и, соответственно, диаграмме), но имеет свою мировую линию на этой пространственновременной диаграмме, поскольку он движется во времени.
Все эти примеры демонстрируют нам, что следы частиц на фотографиях пузырьковой камеры могут дать только самое общее представление о взаимодействиях частиц. Реальные же процессы состоят из целой последовательности обменов частицами. Если мы вспомним о том, что каждая из частиц, принимающих участие во взаимодействии, постоянно испускает и поглощает виртуальные частицы, картина станет еще более сложной. Так, протон обычно периодически испускает и поглощает нейтральные пионы, иногда он испускает (п+) и превращается в нейтрон, который через некоторое время поглощает этот (п-) и снова превращается в протон. На графиках Фейнмана это отражается в том, что обычная линия протона заменяется на более сложное изображение (см. рис. 42). В ходе этих виртуальных процессов первоначальная частица может на некоторое время исчезнуть, как скажем, на графике "в". Возьмем другой пример — скажем, процесс, в котором отрицательный пион распадается на нейтрон (n) и антипротон (р-), аннигилирующие при последующем столкновении и превращающиеся в исходный пион (см. рис. 43). # # Тут снова был полный бардак с названиями частиц. #
Важно принимать во внимание, что все эти процессы подчиняются законам квантовой теории, а следовательно, имеют вероятную, а не действительную природу. Каждый протон может быть охарактеризован с точки зрения вероятности его существования в форме различных пар: «протон плюс пи0», «нейтрон плюс пи+» и так далее. Перечисленные выше процессы являются простейшими примерами виртуальных взаимодействий. Гораздо более сложные, запутанные паттерны возникают тогда, когда виртуальные частицы порождают другие виртуальные частицы, умножая таким образом число виртуальных взаимодействий (не будем забывать при этом, что вероятности имеют отнюдь не произвольный характер, но подчиняются некоторым общим закономерностям, которым будет посвящена отдельная глава).
В своей книге «Мир элементарных частиц» Кеннет Форд приводит сложный пример такого процесса (см. рис. 44), в ходе которого происходит образование и аннигиляция десяти виртуальных частиц, сопровождая график следующим замечанием: «Этот график представляет собой изображение одной из подобных цепочек явлений, на первый взгляд производящее довольно устрашающее впечатление, но, тем не менее, вполне соответствующее действительности. Каждый протон время от времени принимает участие в этом танце творения и разрушения» [28,209].