Чтение онлайн

на главную

Жанры

Дмитрий Иванович Менделеев
Шрифт:

Чем объясняется такое различие в поведении одного и того же элементарного вещества в различных соединениях? – спрашивал Бутлеров и отвечал: «натурой элемента, с которым это вещество является связанным, натурой той зависимости, которая существует между составными частями данного соединения…» Два атома водорода в молекуле воды находятся в зависимости от атома кислорода; четыре атома водорода в молекуле болотного газа находятся в зависимости от атома углерода. Как эта зависимость проявляется, легче всего проследить на углеводородных соединениях.

Для «удовлетворения стремления к соединению», для насыщения одного атома водорода нужен один атом хлора. Таким образом, атомы водорода и хлора химически равнозначны, «эквивалентны». Эта эквивалентность находит свое выражение

в том, что в молекуле болотного газа водород может быть заменен хлором атом за атом. Соединение четырех атомов хлора с одним атомом углерода повторяет «тип» молекулы болотного газа. Это так называемый четыреххлористый углерод. (В болотном газе на такой же атом углерода приходилось четыре атома водорода.) Между этими двумя веществами – болотным газом и четыреххлористым углеродом – находится ряд промежуточных веществ, в которых с углеродом соединены, в разных долях, и хлор и водород. На атом углерода может приходиться три атома водорода и один атом хлора. Это вещество описывается формулой СНзС1 и называется хлористым метилом. Равное соотношение атомов хлора и водорода – СН2С2 – соответствует хлористому метилену; из сочетания одного атома углерода с одним атомом водорода и тремя атомами хлора – СНСlз – образуется хлороформ.

Во всех этих случаях атомы водорода и атомы хлора находятся в химической зависимости от атома углерода. Этот пример показывает, что совсем не безразличен «порядок химических связей», существующих между атомами в частице. А это и есть химическое строение вещества.

Более сложны случаи, когда в углеродистом соединении присутствуют элементы, химическое значение атомов которых больше, чем значение водорода или хлора, например кислород. Поскольку для насыщения одного атома кислорода нужно два атома водорода, как, например, в молекуле воды (Н20), можно утверждать, что химическое значение атома кислорода вдвое больше, чем значение атома водорода, – кислород «двухэквивалентен» по отношению к водороду. Следовательно, для насыщения атома углерода понадобится кислородных атомов вдвое меньше, чем атомов водорода, то есть не четыре, а два. Такое соединение, в котором углеродный атом насыщен двумя атомами кислорода, всем известно – это обыкновенная углекислота С02. Известно также соединение, которое содержит наполовину менее кислорода, – это «ненасыщенное», «непредельное» соединение углерода – СО, так называемая окись углерода. Молекула окиси углерода способна присоединить к себе еще два атома хлора. В результате такого присоединения по формуле СОСl2 получается хлорокись углерода.

Не всегда можно судить о распределении «химической зависимости» с такой определенностью, как для атома углерода. Атомы могут быть соединены и непосредственно и через другие атомы. Хлор и водород соединены непосредственно в молекуле хлороводорода. Они же могут быть соединены через углеродный атом, как в хлороформе. Насколько важно разобраться до конца в том, как именно они соединены, показывает пример молекулы метилового или древесного спирта. Эта молекула со

стоит из одного атома углерода и четырех атомов водорода и еще одного атома кислорода. Что это может значить? Может быть, углеродный атом в действительности имеет больший «запас химического влияния», чем до сих пор допускалось? Может быть, он способен непосредственно удерживать больше, чем четыре атома водорода?

Опыт опровергает это допущение. Просто и прямо «зафиксировать», закрепить кислород на молекуле водорода (что соответствует составу болотного газа) не удается. Присоединение атома кислорода к такому сочетанию атомов углерода и водорода может быть осуществлено только окольным путем.

Путем остроумных рассуждений Бутлеров подводил своих слушателей к тому, что молекулу метилового спирта можно рассматривать как молекулу болотного газа (СН4), в которой один атом водорода заменен так называемым водным остатком, или гидроксилом, то есть атомом кислорода, наполовину насыщенным водородом и поэтому имеющим такое же химическое значение, как один атом водорода. Тогда формула метилового спирта может быть написана так: СНз (ОН) или, употребляя нашедшее широкое распространение обозначение химических связей атомов черточками:

Опыт блестяще подтверждает это предположение. При действии на воду энергично соединяющихся с ней металлов, как, например, металлического

натрия, происходит выделение водорода и образование едкого натра. Едкий натр есть не что иное, как продукт замещения одного атома водорода в воде одним атомом натрия. Водород в углеводородах обычно вовсе не подчиняется действию щелочных металлов. Для защиты от окисления щелочных металлов их обыкновенно сохраняют под слоем жидких углеводородов, например керосина. Между тем, если действовать натрием на метиловый спирт, раздается шипение, выделяется водород, как из воды, и в результате получается тело состава СНзONа. Это тот же метиловый спирт, но в котором ровно одна четвертая часть водорода замещена натрием. Можно сколько угодно продолжать пытаться действовать на это соединение натрием – остальные три атома водорода замещению не поддадутся. Ясно, заключает отсюда Бутлеров, что в метиловом спирте водный характер присущ только одному из четырех атомов водорода.

Известна реакция образования хлористого метила. Ее можно расшифровать так, что из частицы убирается один атом кислорода и, вместе с ним, удаляется атом водорода. Вместо этих двух атомов, эквивалентных атому водорода, встает один атом хлора. И это означает, что водород примыкал к молекуле только посредством кислорода. Уводя кислород, экспериментатор неизбежно уводит и примыкавший к нему водород.

Бутлеров утверждал, что в частице метилового эфира две метиловые группы соединены между собой не прямо, а посредством кислорода. Это вызывало сомнения? Их можно было разрешить… Он предлагал для этого изящнейший опыт. Пользуясь теорией строения, он предсказывал: если основан-

ное на ней предположение о структуре молекулы метилового эфира справедливо, то можно попытаться удалить предполагаемую связь между двумя метиловыми группами, то есть кислород, и тогда частица должна распасться. Каждая из двух метиловых групп проявится в отдельности.

И такой опыт был Бутлеровым осуществлен: при введении в соединение вместо атома кислорода двух атомов иода ожидаемое распадение совершается. Из одной частицы метилового эфира получается две частицы йодистого метила. Частица была «нецельной, – заключал Бутлеров, – составной, и связью между двумя метиловыми группами служил кислород».

Можно получить «цельную» частицу того же состава, как метиловый эфир, где два атома углерода связаны между собой непосредственно. Это этиловый спирт, или алкоголь.

Но подлинным триумфом теории химического строения Бутлерова явился разбор строения веществ, имеющих совершенно одинаковый химический состав и одинаковую величину частиц и, тем не менее, совершенно различных между собой по свойствам. Различия этих веществ, называемых, как мы знаем, изомерами, коренились в разном их химическом строении.

Но когда этот путь только намечался, немецкий химик Кольбе грубо издевался над идеей выводить возможность существования органических веществ из числа «атомности», или, как ее теперь называют, «валентности» атомов. Смеясь, он начертил на доске шестнадцать фигур, в которые могли складываться атомы, составляющие сложную молекулу циан-угольной кислоты.

В истории химии случайно запечатлелась и эта насмешка и все шестнадцать вариантов строения молекулы циан-угольной кислоты, набросав которые Кольбе хотел наглядно продемонстрировать абсурдность бутлеровской теории. Впоследствии не только были обнаружены реальные изомеры, соответствующие всем этим шестнадцати структурным формулам, но оказалось, что Кольбе даже упустил еще три…

Поделиться:
Популярные книги

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Обыкновенные ведьмы средней полосы

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Обыкновенные ведьмы средней полосы

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия