Чтение онлайн

на главную

Жанры

Шрифт:

Открытие дезоксирибозы в составе нового вещества добавило к его названию еще пять слогов: ДезоксирибоНуклеиновая Кислота – ДНК (англ. DNA, франц. ADN, нем. DNS…). Другая нуклеиновая кислота, с рибозой вместо дезоксирибозы и урацилом вместо тимина, стала, соответственно, рибонуклеиновой, РНК. Длинновато и неуклюже – знать бы заранее, каким важным окажется вещество из гноя, можно было бы придумать что-нибудь покрасивее. С другой стороны, если бы эти молекулы назвали “Священной Книгой Жизни” или “Основой Эволюции”, вряд ли нам сейчас было бы проще.

Кстати: ДНК – дезоксирибонуклеиновая КИСЛОТА, поэтому ДНК – ОНА, а не “он” или “оно”. Когда биологи слышат выражения вроде “ваше ДНК”, “человеческое ДНК” – сердятся и могут побить.

Итак, ДНК состоит из четырех нуклеотидов – А, Т, G, С. Отсюда и возникли сомнения в том, что она может быть веществом наследственности. Представлялось невероятным, что четырьмя нуклеотидами можно записать большой

объем информации. К тому же считалось, что они регулярно повторяются в линейной молекуле, то есть, по Шрёдингеру, ДНК – это обои, а не гобелен. А вот в белках, например, целых 20 аминокислот – примерно столько букв в английском алфавите, а если учесть модификации аминокислот, то и русский алфавит белки обгонят.

Казалось бы, Левену, открывшему нуклеотиды и даже соединившему их в цепочку, оставался один шаг до открытия структуры ДНК, – но он этого шага не сделал, а предположил, что ДНК состоит из четырехнуклеотидных молекул, по одному нуклеотиду каждого вида. Это вещество представлялось примитивным, в том числе и самому Левену. “Химия нуклеиновых кислот может быть изложена кратко. Действительно, нескольких графических формул, которые не заполнят даже одну печатную страницу, может быть достаточно, чтобы выразить весь запас современных знаний по этому вопросу” [4] , – писал он в 1931 г. [5] Парадокс: Левен сильно продвинул вперед изучение структуры нуклеиновых кислот, но он же существенно подорвал репутацию ДНК, поддерживая мнение, что эта неинтересная молекула состоит из четырех нуклеотидов, взятых в равных количествах. Когда решался вопрос о возможном носителе наследственной информации, серьезные люди ставили на белки.

4

В списке литературы приведена статья J. S. Cohen и H. Franklin, по которой цитируется Левен. Оригинальная работа Левена: P. A. Levene, L. W. Bass. Nucleic Acids. Chemical Catalog Co, New York, 1931.

5

Cohen J. S., Franklin H. P. The Search for the Chemical Structure of DNA // Connecticut Medicine. October 1974 Issue; Vol. 38, No. 10. 551–557.

Интересно, что у статьи о структуре “тимонуклеиновой кислоты” [6] (так тоже называли ДНК – ее выделяли из тимуса, и она содержала азотистое основание тимин, которого нет в РНК) два автора: Фибус Левен и некий E. S. London. Это Ефим Семенович Лондон, ленинградский патофизиолог, биохимик и радиобиолог. Чтобы получить удобные для исследования небольшие молекулы, соавторы расщепляли нуклеиновые кислоты в желудочно-кишечном тракте собак, которым вставили фистулы по И. П. Павлову, примерно такие же, как для изучения условных и безусловных рефлексов. (Помните в учебнике: звонит звонок, и у собаки выделяется желудочный сок?) Но эти собаки сами по себе ученых не интересовали, а играли роль своего рода химических реакторов: чем бы ни была эта тимонуклеиновая кислота, в биохимии живой клетки не может быть ничего такого, чего не переварило бы хищное млекопитающее. Вот этих собак и готовил к опыту Е. С. Лондон. Кстати, благодарность Павлову, в лабораторию которого Левен приезжал работать, в статье тоже есть. Левен вместе с семьей эмигрировал из России в Америку в 1891 г., уже взрослым, и свободно говорил по-русски. А современным студентам, изучающим молекулярную биологию с биоинформатикой и свысока глядящим на классическую физиологию, не мешает помнить, что их любимые науки начинались некоторым образом в собачьем кишечнике.

6

Levene P. A., London E. S. The Structure of Thymonucleic Acid // J. Biol. Chem; 1929; 83, 793–802.

Явление двойной спирали

А затем появились экспериментальные данные в пользу того, что за перенос генетической информации отвечает все-таки ДНК, а не белок. Это показали в 30–40 гг. ХХ в. американские генетики Освальд Эвери, Колин Маклеод и Маклин Маккарти. Они проводили опыты со стрептококком – возбудителем пневмонии, по сути, продолжая исследования, которые еще в 1928 г. провел Фредерик Гриффит, британский военный медик [7] .

7

Avery O. T., MacLeod C.M., McCarty M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types – Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III (PDF) // Journal of Experimental Medicine. February 1, 1944; 79 (2): 137–158; doi: 10.1084/jem.79.2.137.

У Streptococcus pneumoniae

есть два штамма – один образует шероховатые колонии, другой гладкие. Как выяснилось позднее, “гладкие” бактерии заключены в полисахаридную капсулу, которая защищает их от иммунной системы хозяина. Поэтому инъекция гладких бактерий убивает подопытную мышку, а животное, которому ввели “шероховатый” штамм, выздоравливает. Гладкие стрептококки погибают при нагревании. Инъекция мертвых бактерий, естественно, не повредит мыши, удивительно другое: когда Гриффит смешал живых безвредных “шероховатых” стрептококков с убитыми “гладкими” и ввел их мыши, животное умерло, а из его организма удалось выделить живых “гладких” стрептококков. Было такое впечатление, что безобидные бактерии пообщались с покойными убийцами и научились у них плохому. Если убавить метафоричности – позаимствовали у них какое-то вещество, которое к тому же сумели передать новым поколениям бактерий, плодящихся в мышке!

Так вот, Эвери, Маклеод и Маккарти сумели определить, что это вещество – ДНК. Только когда они удаляли ДНК из экстракта “гладких” бактерий, его смешивание с безвредными “шероховатыми” оставило их безвредными, инфицированные мыши не погибли. Во всех остальных случаях, когда экстракт очищали от полисахаридов, липидов, белков или РНК, но не от ДНК, эффект был тот же, что и при смешивании с целыми мертвыми бактериями: мыши погибали, из них можно было выделить живой патогенный штамм.

Теперь мы знаем, что бактерии умеют поглощать ДНК из внешней среды и приспосабливать ее для своих нужд: вдруг у покойных собратьев в геноме есть что-то полезное, что позволит выжить, к примеру, при встрече с антибиотиком? Эти прагматичные и безжалостные существа присваивали чужие гены и сами себя превращали в ГМО задолго до компании Monsanto. Собственно, даже не так: на ранних стадиях эволюции обмен генами был рутинным событием и для бактерий в некотором смысле остается рутиной по сей день, а генетическую межвидовую изоляцию “придумали” высшие организмы.

Еще одно подтверждение того факта, что вещество наследственности – именно ДНК, получили американские генетики Альфред Херши и Марта Чейз. За эти опыты Херши получил Нобелевскую премию по физиологии и медицине 1969 г. (совместно с Максом Дельбрюком и Сальвадором Лурия, которые доказали другую важную вещь: что мутации у бактерий возникают не “в ответ” на факторы отбора, а случайным образом, в том числе и до того, как эти факторы начнут действовать; отбор лишь сохраняет полезные мутации и отбраковывает вредные). Марту Чейз на премию не выдвинули, дополнительно обидно, что в некоторых русских источниках встречается “эксперимент Херши – Чейза”: об исполнителе эксперимента и соавторе статьи не знают даже, что это женщина.

Для эксперимента Херши и Чейз выбрали бактериофаг Т 4. Бактериофаги – вирусы бактерий, одни из самых простых объектов живой природы. (Хотя насчет “живой” идут бесконечные споры. Вирусы и бактериофаги не могут размножаться вне клетки, к тому же бактериофаг можно закристаллизовать, как, например, молекулу белка. Так, может быть, их следует рассматривать как своего рода паразитические молекулярные комплексы? Не считаем ведь мы живыми прионы – белки с аномальной структурой, которые катализируют превращение нормальных клеточных белков в себе подобные и тем самым вызывают тяжелые заболевания – энцефалопатии). Так или иначе, вирусы и фаги размножаются, потомство у них похоже на родителя, и “вещество наследственности” у них должно быть. Что важно, фаг не проникает внутрь бактерии целиком: он, как шприц, впрыскивает в нее свое содержимое, оболочка остается снаружи клетки, а потом внутри бактерии образуются новые фаги.

Херши и Чейз показали, что фаги вводят в бактериальную клетку свою ДНК, а не белок, с помощью очень изящного опыта. Было известно, что белки содержат кислород, азот, углерод и серу, а нуклеиновые кислоты – кислород, азот, углерод и фосфор. Сера присутствует в белках, но не в ДНК, а фосфор – наоборот, в ДНК, но не в белке. Экспериментаторы получили две разновидности фагов: одни имели в своем составе радиоактивную серу 35S, другие – радиоактивный фосфор 32P. Иначе говоря, в одних фагах радиоактивную метку несли только белки, в других – только ДНК. Так вот, когда бактерий инфицировали фаги первого типа, метка оставалась снаружи, в растворе, а когда второго – меченый фосфор попал внутрь клетки, и новые фаги, которые вышли из этой клетки, тоже были немного радиоактивными. Вывод из этих экспериментальных данных читатель может сделать сам.

Поделиться:
Популярные книги

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Хозяйка Междуречья

Алеева Елена
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Хозяйка Междуречья

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Игрок, забравшийся на вершину. Том 8

Михалек Дмитрий Владимирович
8. Игрок, забравшийся на вершину
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Игрок, забравшийся на вершину. Том 8

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб