До конца времен. Сознание, материя и поиск смысла в меняющейся Вселенной
Шрифт:
Теперь температура. Что мы подразумеваем под температурой на уровне молекул? Ответ известен. Температура – это средняя скорость множества молекул [27] . Объект холоден, если средняя скорость его молекул низка, и горяч, если она высока. Так что определить, как температура влияет на энтропию, равнозначно тому, чтобы определить, как влияет на энтропию средняя скорость молекулы. И так же, как в случае с объемом, для качественной оценки нам много не потребуется. Если температура пара низка, то разрешенных перестановок – замен скоростей молекул – будет относительно немного: чтобы температура оставалась постоянной и гарантировала таким образом практическую одинаковость конфигураций, вы должны будете компенсировать любое увеличение скоростей отдельных молекул соответствующим снижением скоростей других молекул. Но проблема низкой температуры (низкой средней скорости молекул) в том, что понижать скорости вам особенно некуда – уткнетесь в нулевой предел. Поэтому доступный диапазон возможных скоростей молекул оказывается достаточно узким, а свобода по перераспределению этих скоростей ограничена. И наоборот, если температура высока, то и игра в перераспределение набирает обороты: с более высоким средним значением диапазон молекулярных скоростей (одни из которых выше среднего значения, другие – ниже) оказывается намного шире, что позволяет свободнее перемешивать скорости, сохраняя
27
Физически температура пропорциональна средней кинетической энергии частиц, поэтому математически она вычисляется путем усреднения квадрата скорости каждой частицы. Для наших целей достаточно рассматривать температуру в терминах средней скорости – средней по величине.
Наконец, давление. Давление пара на вашу кожу или на стены ванной обусловлено столкновениями налетающих молекул H2O, ударяющихся об эти поверхности: каждая молекула, налетая, дает крохотный толчок, так что чем больше молекул, тем выше давление. То есть для заданных температуры и объема давление определяется полным числом молекул пара в вашей ванной – величиной, влияние которой на энтропию можно оценить с величайшей простотой. Меньшее число молекул H2O в вашей ванной (вы быстро приняли душ) означает меньшее число возможных перестановок, следовательно, более низкую энтропию; и наоборот, большее число молекул H2O (вы долго нежились под душем) означает большее число возможных перестановок, так что энтропия окажется выше.
Резюмируем. Меньшее число молекул, более низкая температура или меньший объем дают нам более низкую энтропию. Большее число молекул, более высокая температура или больший объем соответствуют более высокой энтропии.
По итогам этого короткого разбора позвольте мне обратить ваше внимание на один подход к энтропии, не слишком точный, но позволяющий получить надежное и простое эмпирическое правило. Вероятность столкнуться с высокоэнтропийными состояниями всегда выше. Поскольку такие состояния могут быть реализованы огромным числом различных комбинаций составляющих систему частиц, они типичны, заурядны, легко воспроизводимы и встречаются на каждом шагу. Напротив, если вам вдруг встретится какое-нибудь низкоэнтропийное состояние, на него следует обратить внимание. Низкая энтропия означает, что существует гораздо меньше способов получить заданное макросостояние из его микроскопических ингредиентов, поэтому такие конфигурации найти трудно, они необычны, тщательно организованы и редки. Примите долгий горячий душ – и обнаружите пар равномерно распределенным по ванной: высокоэнтропийное и совершенно неудивительное состояние. Примите долгий горячий душ и представьте, что обнаружили весь пар собранным в идеальный небольшой кубик, плавающий перед зеркалом: низкоэнтропийное и чрезвычайно необычное состояние. Настолько необычное, что, случись подобное с вами, вам следовало бы с большим сомнением отнестись к варианту, что вы случайно столкнулись с одной из тех маловероятных вещей, которые иногда случаются. В принципе, это могло бы быть объяснением. Но я готов поставить на кон свою жизнь, что это объяснение неверно. Точно так же, как вы наверняка заподозрили бы неладное, увидев на столе 100 монет орлом кверху (вы заподозрили бы, к примеру, что кто-то специально перевернул все монеты, выпавшие решкой). При встрече с любой низкоэнтропийной конфигурацией следует искать какое-то неслучайное объяснение.
Подобная логика применима даже в таких обыденных, на первый взгляд, ситуациях, как находка яйца, муравейника или кружки. Упорядоченная, искусственная, низкоэнтропийная природа этих конфигураций требует объяснения. То, что беспорядочное движение в точности подходящих частиц случайно собрало их в яйцо, муравейник или кружку, теоретически возможно, но нереалистично. Мы чувствуем потребность найти более убедительные объяснения – и, разумеется, далеко ходить за ними не приходится: и яйцо, и муравейник, и кружка возникают благодаря тому, что какие-то определенные формы жизни собирают прежде случайные конфигурации частиц в окружающей среде и превращают их в упорядоченные структуры. Как и почему жизнь способна создавать такой изысканный порядок – отдельная тема, к которой мы обратимся в дальнейших главах. Пока же урок прост: низкоэнтропийные конфигурации следует рассматривать как критерий того, что порядок, который мы видим перед собой, возможно, обусловлен мощным организующим влиянием.
В конце XIX в. австрийский физик Людвиг Больцман, вооруженный этими идеями, многие из которых сам и выдвинул, считал, что может ответить на вопрос, с которого мы начали этот раздел: чем отличается будущее от прошлого? Его ответ опирался на понятие энтропии, определяемой вторым началом термодинамики.
Начала термодинамики
Если энтропия и второе начало прочно прописались в культуре, то отсылки к первому началу термодинамики в обыденном общении попадаются намного реже. Тем не менее чтобы до конца освоиться со вторым началом, полезно сначала разобраться с первым. Оказывается, первое начало тоже широко известно, но, если можно так выразиться, под псевдонимом. Речь о законе сохранения энергии. Каким бы количеством энергии вы ни располагали в начале процесса, в конце этого процесса у вас ее будет ровно столько же. Вы должны быть очень скрупулезны в подсчете энергии и не забывать про все те ее формы, в которые первоначальная энергия, возможно, превратилась, такие как кинетическая энергия (энергия движения), или потенциальная энергия (запасенная, как энергия растянутой пружины), или излучение (энергия полей, таких как электромагнитное или гравитационное), или тепло (энергия беспорядочного движения молекул и атомов). Но если вы все внимательно подсчитаете, то первое начало термодинамики гарантирует, что баланс энергии сойдется [28] .
28
Точнее, первое начало термодинамики представляет собой вариант закона сохранения энергии, который (1) признает теплоту как форму энергии и (2) учитывает работу, произведенную системой или над системой. Таким образом, сохранение энергии означает, что изменение внутренней энергии системы возникает из-за разницы между полным количеством теплоты, которую она получает, и полной работой, которую производит. Особенно хорошо информированный читатель, возможно, отметит, что когда мы рассматриваем энергию и ее сохранение в глобальном масштабе – по всей Вселенной, – то появляются тонкости. Нам нет нужды их разбирать, поэтому мы вполне можем просто принять утверждение о том, что энергия сохраняется.
Второе начало термодинамики сосредоточено на энтропии. В отличие от первого начала, второе не является законом сохранения. Это закон роста. Второе начало гласит, что во времени существует мощнейшая тенденция к увеличению энтропии. Проще говоря, особенные конфигурации склонны эволюционировать в сторону обычных (ваша тщательно отглаженная рубашка становится мятой), то есть порядок склонен скатываться к беспорядку (ваш идеально организованный гараж превращается в беспорядочную мешанину инструментов, ящиков и спортивного инвентаря). Хотя подобные сравнения формируют прекрасный интуитивный образ, статистическая формулировка понятия энтропии, данная Больцманом, позволяет описать второе начало со всей точностью и, что не менее важно, получить ясное представление о том, почему оно верно.
Все сводится к игре чисел. Представьте еще раз монеты. Если вы аккуратно разложите их на столе орлами кверху – в низкоэнтропийной конфигурации, – а затем немного потрясете и перемешаете их, то получите, скорее всего, хотя бы несколько решек – более высокоэнтропийную конфигурацию. Если потрясти монеты еще раз, то можно представить, что вам удастся вернуть все монеты в положение орлом кверху, но для этого стол нужно будет трясти вполне определенным образом, настолько точно, что перевернутся только те несколько монет, которые легли решкой. Это чрезвычайно маловероятно. Намного более вероятно, что тряска вместо этого перевернет некий случайный набор монет. Некоторые из тех нескольких монет, что были решками, возможно, перевернутся обратно, но из тех монет, что были орлами, гораздо большее количество станет решками. Так что простая прямолинейная логика – никакой хитроумной математики, никаких неуместно абстрактных идей – сообщает нам, что если начать с варианта «все орлы», то произвольное встряхивание приведет к увеличению числа решек. То есть к росту энтропии.
Движение к увеличению числа решек будет продолжаться до тех пор, пока мы не достигнем соотношения орлов и решек примерно 50 на 50. В этот момент встряхивание станет переворачивать монеты из орлов в решки примерно столько же, сколько из решек в орлы, и дальше конфигурация начнет б'oльшую часть времени мигрировать между самыми густонаселенными, самыми высокоэнтропийными группами.
То, что верно для монет, справедливо и в более общем плане. Если вы печете хлеб, можете быть уверены, что аромат очень скоро наполнит даже самые удаленные от кухни комнаты. Сначала молекулы, высвободившиеся по мере запекания хлеба, концентрируются возле духовки. Но постепенно они рассеиваются. Причина этого, аналогичная нашему объяснению на случай монет, состоит в том, что у ароматических молекул гораздо больше способов распределиться по всему объему, чем держаться всем вместе. Поэтому намного вероятнее, что из-за случайного столкновений и ударов молекулы будут разлетаться, а не кучковаться. Так что низкоэнтропийная конфигурация молекул, сосредоточенных вокруг печки, будет естественным образом развиваться в сторону высокоэнтропийного состояния, в котором они распределятся по всему вашему дому [29] .
29
Примерно так же, как в примере с паром в вашей ванной, где я оставил без внимания молекулы воздуха, для простоты я не буду явно рассматривать столкновения между горячими молекулами, вылетевшими из пекущегося хлеба, и более холодными молекулами воздуха, летающими по вашей кухне и по всему дому. Такие столкновения должны в среднем увеличивать скорость молекул воздуха и уменьшать скорость тех, что вылетели из хлеба, приводя в конечном итоге оба типа молекул к одинаковой температуре. Понижение температуры молекул хлеба должно снижать их энтропию, но повышение температуры молекул воздуха более чем компенсирует повышение энтропии, так что суммарная энтропия обеих групп на самом деле повысится. В упрощенном варианте, который я описал, можно считать среднюю скорость молекул, высвобожденных хлебом, постоянной в процессе их распространения; тогда их температура будет оставаться постоянной, так что повышение их энтропии будет происходить вследствие того, что они заполняют больший объем.
Говоря в самом общем плане, если некоторая физическая система не находится еще в состоянии с максимальной доступной энтропией, вероятность того, что она будет развиваться в направлении этого состояния, чрезвычайно велика. Объяснение, которое хорошо иллюстрируется хлебным ароматом, опирается на самые простые рассуждения: поскольку число конфигураций с большей энтропией многократно превышает их число с меньшей энтропией (по определению энтропии), вероятность того, что случайная толкотня – бесконечные соударения и колебания атомов и молекул – поведет систему по направлению к более высокой, а не к более низкой энтропии, чрезвычайно высока. Процесс этот будет продолжаться до тех пор, пока мы не достигнем конфигурации с самой высокой доступной энтропией. Начиная с этого момента беспорядочное движение молекул заставит, скорее всего, составляющие системы мигрировать между (как правило) громадным числом конфигураций, соответствующих состояниям с максимальной энтропией [30] .
30
Для подкованного в математике читателя скажу, что в основе данного обсуждения (так же как и в большинстве изложений статистической механики в учебниках и исследовательской литературе) лежит ключевое формальное предположение. Для любого заданного макросостояния существуют сопоставимые микросостояния, которые будут развиваться в направлении более низкоэнтропийных конфигураций. К примеру, рассмотрим обращение во времени любого развития событий, результатом которого стало заданное микросостояние, берущее начало в более ранней низкоэнтропийной конфигурации. Такое «перевернутое во времени» микросостояние должно развиваться по направлению к более низкой энтропии. В общем случае мы классифицируем такие микросостояния как «редкие» или «специализированные». Математически такая классификация требует определения меры на пространстве конфигураций. В знакомых ситуациях использование равномерной меры на таком пространстве действительно делает начальные условия со снижением энтропии «редкими» – то есть с малой мерой. Однако, если мера выбрана так, чтобы достигать пиковых значений в окрестностях таких начальных конфигураций со снижением энтропии, они по построению не будут редкими. Насколько нам известно, выбор меры производится эмпирически; для систем того рода, что мы встречаем в повседневной жизни, равномерная мера выдает предсказания, которые хорошо согласуются с наблюдениями; то же можно сказать о введенной нами мере. Но важно отметить, что выбор меры оправдывается экспериментом и наблюдением. Когда мы рассматриваем экзотические ситуации (такие как ранняя Вселенная), для которых у нас нет данных, позволяющих выбрать конкретную меру, приходится признать, что интуиция о «редких» или «оригинальных» состояниях не имеет такой же эмпирической базы.
Вот оно, второе начало термодинамики. И вот почему оно верно.
Энергия и энтропия
Прочитав описание, вы могли бы подумать, что первое и второе начала термодинамики совершенно различны. В конце концов, одно из них сфокусировано на энергии и ее сохранении, а другое – на энтропии и ее росте. Но существующая между ними глубокая связь подчеркивается фактом, который неявно содержится во втором начале и к которому мы будем еще неоднократно обращаться: не вся энергия одинакова.