Дождевые черви для повышения урожая
Шрифт:
Весьма существенно накопление в кишечнике червей кальция в виде биогенного кальцита. Кальцит – минерал, представляющий собой кристаллы углекислой извести; биогенным же он называется в силу того, что его происхождение связано с деятельностью живых существ. Такие кристаллы находил еще Дарвин в железках на пищеводе дождевых червей. Однако его взгляды на механизм их образования и физиологическое значение подверглись существенным изменениям. До сих пор ученые не знают в точности способа образования этих кристаллов; по-видимому, он заключается в том, что кальций, поступающий с листьями и почвой в кишечник червей в виде тончайшим образом распыленной (коллоидной) взвеси окиси кальция, превращается в углекислую соль, которая кристаллизуется в пищеводе. Эти кристаллы при движении по кишечнику растут, а затем соединяются друг с другом, образуя компактные камешки (сростки, или друзы) размером до 1,5 мм и более.
Как показывают опыты С. И. Пономаревой (1953), проводившиеся как в лабораторных условиях, так и в поле, количество биогенного кальцита, поступающего в почву с копролитами дождевых червей, весьма значительно. Содержание его в копролитах, собранных
Известно, что при разложении отмерших частей растений образуется значительное количество кислот. Напомним, что почвы при отсутствии в них дождевых червей становятся кислыми вследствие избытка распадающихся растительных остатков. Как показали измерения активной реакции среды в Киевской области (табл.), опавшие листья разных деревьев имеют сильно кислую реакцию. Несмотря на это, реакция копролитов дождевых червей оказывается заметно щелочной. Почти такая же щелочность характерна для самых верхних слоев почвы, которые недавно созданы копролитами червей. Более глубокие слои лесных почв могут быть в значительной степени кислыми, что, вероятно, обусловлено уменьшением в этих слоях количества дождевых червей и их извержений.
Таблица
Активная реакция (рН) опавших листьев деревьев, извержений дождевых червей и разных слоев почвы (А. И. Зражевский, 1949)
Аналогичные данные получены в опытах с дерново-подзолистой почвой в Московской области; черви, помещенные в почвы с кислой реакцией, образовали копролиты со щелочной реакцией. При этом было обнаружено, что чем больше биогенного кальцита в извержениях червей, тем сильнее проявляется сдвиг реакции среды в щелочную сторону. Однако подщелачивание почвы дождевыми червями идет не только за счет образования кальцита. Возможно, еще большую роль играют щелочные выделения желез стенки средней кишки дождевых червей, которые нейтрализуют кислые пищевые массы, поскольку их пищеварительные ферменты, как это было известно еще Дарвину, переваривают пищу только в щелочной среде. Таким образом, одно из важнейших следствий прохождения почвы через кишечник червей – ее подщелачивание. Не будь этого, все свойства почв (прежде всего – их плодородие) были бы совсем иными.
На основании вышесказанного можно сделать вывод об обоюдной зависимости организма и среды. Возможность существования дождевых червей лишь при определенных значениях рН и наличие оптимальной кислотности почвы для каждого вида – вполне реальные факты. Но не менее реальным является способность дождевых червей изменять условия в почве в сторону приближения их к оптимальным. Не менее важной является роль дождевых червей в придании почве зернистой структуры, что существенно повышает ее качество и плодородие.
Следует отметить, что структура имеет большое значение для характеристики почв. При этом следует различать понятия «частицы» почвы и ее «структурные отдельности», или «агрегаты». Изучение того и другого в почвах, обработанных дождевыми червями, показывает, что эти животные уменьшают размеры частиц почвы и одновременно создают почвенные структурные единицы, т. е. отдельности.
В мышечном желудке происходит обкатывание и измельчение частиц почвы (особенно мягких). Механический анализ копролитов показывает, что по сравнению с исходной почвой в них содержится большее количество мелких, пылеватых частиц. Однако обнаружить их можно только после искусственного разрушения структурных отдельностей, в которые они слипаются в задних отделах кишечника червей. Отдельные комочки извержений червей могут сливаться друг с другом.
Неоднократно ставились опыты с целью проследить, как из мелкой почвы постепенно образуются довольно крупные отдельности неправильной формы. В одном из таких опытов в деревянные ящики с почвой, просеянной через сито с ячейками в 1 мм, помещалось по семь экземпляров большого красного и пашенного червей на 1 кг почвы. По прошествии 47 дней в почве оказалось 32,4 % отдельностей размером больше 15 мм, тогда как в контрольных ящиках с почвой в тождественных условиях, но без дождевых червей, их было только 3,5 %. При этом количество частиц размером более 7 мм в почве с дождевыми червями значительно выше, а количество частиц размером менее 5 мм ниже, чем в контрольных ящиках.
Таким образом, структура почвы из очень мелкозернистой становится крупнозернистой и ореховатой. В дальнейшем размеры отдельностей становятся еще несколько больше.
Отдельности в почве образуются также под влиянием деятельности других почвенных организмов, главным образом грибков и микробов. Однако они отличаются от образовавшихся копролитов дождевых червей более округлой формой и более рыхлой консистенцией.
Но главная особенность копролитов заключается в их свойстве, которое почвоведы называют водопрочностью. Это означает способность структурной отдельности почвы противостоять размыванию ее водой. Водопрочность копролитов может измеряться различными методами – например, количеством воды, падающей на них каплями с определенной высоты, которое необходимо для размывания их на отдельные почвенные частицы. В опыте С. И. Пономаревой было установлено, что для размывания определенного размера выбросов дождевых червей требовалось от 3,24 до 21,15 л воды, тогда как для размывания такого же размера структурных отдельностей, образованных деятельностью микроорганизмов, – от 0,005 до 1,53 л воды.
Эти данные подтверждены рядом других исследователей (Бахтин и Польский, 1950; Мамытов, 1953;
Компостирование
В природе отмершие растения и умершие животные разлагаются медленно в результате действия различных естественных биологических и химических процессов, известных как деградация. Компостирование – это способ ускорения естественной деградации в контролируемых условиях. Компостирование – результат понимания действия этих природных биологических и химических систем.
Из истории компостирования
История компостирования уходит в глубь веков. Первые письменные упоминания об использовании компоста в сельском хозяйстве появились 4500 лет назад в Месопотамии, в междуречье Тигра и Евфрата (нынешний Ирак). Искусством компостирования владели все цивилизации. Римляне, египтяне, греки активно практиковали компостирование, что нашло свое отражение в Талмуде, Библии и Коране. Археологические раскопки подтверждают, что цивилизация Майя 2000 лет назад также занималась компостированием.
По окончании Второй мировой войны в сельском хозяйстве стали использовать результаты научных разработок. Сельскохозяйственная наука поставила во главу повышения урожайности химические удобрения и пестициды. Химические удобрения пришли на смену компосту.
В 1962 году вышла в свет книга Rachel Carson «Silent Spring» («Безмолвная весна»), посвященная результатам повсеместного злоупотребления химическими пестицидами и другими загрязнителями. Это послужило сигналом к общественному протесту и запрещению производства и использования опасных продуктов. Многие начали заново открывать для себя преимущества ведения так называемого органического сельского хозяйства.
Одной из первых публикаций в этом аспекте была книга сэра Альберта Говарда (Albert Howard) «An Agricultural Testament» («Завет хлебопашца»), вышедшая в свет в 1943 году. Книга вызвала огромный интерес к органическим методам в сельском хозяйстве и садоводстве. Сегодня каждый фермер, полагающийся на дорогостоящие удобрения, признает значение компоста в стимулировании роста растений и в восстановлении истощенной и безжизненной почвы.
«Компост» – волшебное слово для огородника и ключ к длительному плодородию почвы. Самым экономичным и доступным из удобрений является компост, приготовленный из хозяйственных и пищевых отходов. При компостировании органические остатки уже через несколько месяцев превращаются в ценный гумус.
Стандарт качества компостов
В мире не существует единого стандарта качества компостов (не путать с вермикомпостами, то есть с биогумусом!). Поскольку условия роста и потребности растений варьируют, потребители компоста заинтересованы в информации относительно качества используемой ими продукции. Специфические характеристики компостов определяют, как и при каких способах применения можно получить наилучший эффект.
В Канаде много организаций вовлечено в разработку стандартов. Критерии качества компостов разработаны AAFC (Agriculture and Agri-Food Canada), CCME (Council of Ministers of the Environment) и Standards Council of Canada (SCC, впоследствии BNQ).
Национальный стандарт Канады – CAN/BNQ 0413–200 «Support Document for Compost Quality Criteria». Имеется три национальных документа: национальный стандарт для индустрии компостирования (BNQ), руководство по использованию компоста (CCME), принятие новых мандатных критериев для компоста (AAFC).
Существует пять категорий оценки компостов: зрелость компоста, посторонние включения, микроэлементы, патогенные организмы, органические загрязнители.
В стандарте BNQ Р 0413–200/1995 записано, что компост – это зрелый продукт твердой консистенции, получаемый в результате компостирования, который является управляемым биоокислительным процессом, протекающим в твердом гетерогенном органическом субстрате и включающим термофильную фазу. В приложении к стандарту можно найти еще 18 дефиниций этого понятия.
BNQ выделяет три типа компостов: АА, А и В. Эта классификация основана на определении общего органического вещества, посторонних включений и микроэлементов. По остальным критериям различия между этими типами компостов не обнаруживаются. Компост, классифицированный как типы АА и А, – это высококачественный продукт, тогда как в компосте типа В все требуемые показатели находятся в минимуме необходимых значений. Типы компоста АА и А имеют идентичные количества микроэлементов. Показатели влажности, зрелости и патогенных организмов одинаковы для всех трех типов компоста.