Эфир. Русская теория.
Шрифт:
Выстраиваться в осевом направлении могут сколько угодно электронов; при большом их количестве собранная их них цепочка будет представлять собой вращающийся вокруг своей оси шнур — это и есть магнитная силовая линия; магнитные полюса у этого шнура проявляются только на его торцах. Прочность магнитного шнура не столь высока — сказывается помеха осевых шариков, из-за них электроны не могут сблизиться вплотную, — поэтому при незначительных внешних воздействиях шнур рассыпается.
Электрон, в отличие от эфирного шарика, имеет постоянно меняющееся внутреннее состояние, то есть он живёт, и у него, следовательно, есть внутреннее время, а у этого времени есть начало — момент рождения электрона. Ход внутреннего времени, определяемый частотой вращения, изменяется в зависимости от эфирного давления, то есть от избыточной плотности в окружающем эфирном пространстве: чем меньше плотность, тем ниже частота вращения электрона и тем медленнее идёт его внутреннее время.
Завершая предварительный разговор об электроне, скажем, что у него не существует никакого мистического электрического заряда; есть только сам электрон — и ничего больше.
Атом. Конструкция атомов несколько сложнее, хотя строится она по тем же законам: возникают атомы, как и электроны, при столкновениях эфирных потоков на больших скоростях. Как это происходит — можно продемонстрировать на примере возникновения хорошо всем известного дымового колечка. Есть такой школьный опыт: наполняют ящик с отверстием дымом и ударяют по задней упругой стенке; при этом из ящика выбрасывается воздушный вихрь в виде кольца. Это и есть прообраз атома. Точно такие же по форме кольцеобразные микрозавихрения, представляющие собой атомы, возникают при столкновениях эфирных потоков, только размеры их несоизмеримо меньше.
В идеальном виде образующиеся кольцеобразные микрозавихрения эфира имеют вид тора с вращающейся оболочкой, состоящей из эфирных шариков. Устройство торовых оболочек атомов можно выразить через электроны. Представим себе магнитный шнур из соосно собранных электронов, вращающихся в одном направлении. Если убрать у них все осевые шарики, мешающие их полному сближению, то шнур окажется чрезвычайно крепким. Замкнув его разнополярные концы, получим торовую оболочку; это и есть атом. Следовательно, торовая оболочка атома состоит из замкнутого ряда строенных, бегающих друг за другом эфирных шариков.
Как и в случае с электроном, остановиться шарики оболочки атома не могут, потому что нет трения, а разбежаться не могут, так как сжаты избыточной плотностью окружающего эфира; по этой причине атомы обречены на существование; правда, одни из них, что покрепче, могут сохраняться долгое время, другие, — менее крепкие, более склонны к распаду.
Самым простым и наименьшим из всех известных является атом водорода: он представляет собой почти идеальный по форме тор; его правильная геометрия хоть и нарушается, но не столь значительно, как у других атомов. Его оболочка состоит приблизительно из 1840 бегающих строенных шариков, поэтому инерция атома водорода во столько же раз больше инерции электрона и составляет в масштабе эталона массы приблизительно 1,6 на 10 в минус двадцать четвёртой степени грамма. Всего в оболочке атома водорода насчитывается приблизительно 5,5 тысяч эфирных шариков. Диаметр сечения тора (у всех атомов это сечение одинаковое) равен диаметру электрона в плоскости вращения его шариков, а диаметр самого тора атома водорода приблизительно в 586 раз больше диаметра элементарного шарика.
Так выглядит атом водорода
Приблизительность, которую мы постоянно подчёркиваем, говорит о том, что атомы водорода могут быть чуть больше или чуть меньше, причём уменьшение его размеров имеет чёткий предел, определяемый упругостью шнура тела атома, а увеличение — теоретически не ограничено и могло бы продолжаться до того размера, когда из атома водорода получится атом следующего химического элемента, то есть гелия; но чрезмерно раздутые атомы водорода оказываются менее устойчивыми и чаще распадаются.
Вращающиеся торовые оболочки атомов закручивают вокруг себя прилегающий эфир, приводя его элементарные шарики в движение, и создают тем самым в нём пониженное давление; перепад давлений стремится сначала сплюснуть тор, а затем, если позволяют его размеры, скрутить его в ту или иную конфигурацию; так образуются атомы всех остальных, кроме водорода, химических элементов и их изотопов.
Процесс скручивания торовых оболочек, может быть, в какой-то степени и случаен, но в общем он подчиняется определённым закономерностям; точнее говоря, случайность сказывается на самом раннем этапе скручивания, то есть даёт толчок скручиванию, а далее события разворачиваются почти что закономерно и могут быть предсказаны логически. Образовавшаяся в результате столкновения эфирных потоков вращающаяся торовая оболочка едва ли будет с самого начала геометрически идеальной: те же эфирные потоки исказят тор уже при его рождении, — в этом как раз и состоит случайность, и этого оказывается достаточно, чтобы начался процесс скручивания.
Допустим, образовавшийся тор имеет диаметр в десятки раз больше диаметра тора водорода. Подвижность эфира, прилегающего к вращающейся торовой оболочке, будет внутри тора больше, чем снаружи; следовательно, внешнее давление попытается сжать тор. Теоретически идеальный тор, если рассматривать его как обычное металлическое кольцо, будет противостоять сжатию, но, оказавшись в силу случайности чуть-чуть сплюснутым, тор потеряет свою устойчивость и станет из кольца превращаться сначала в овал, а потом — в восьмёрку. Края восьмёрки, случайно изогнувшись, начнут далее сближаться уже по закону: между сближающимися краями давление эфира будет всё время падать. Скручивание тора будет продолжаться и далее, при этом могут возникать самые замысловатые конфигурации; и завершится процесс формирования атома только тогда, когда стремящиеся друг к другу участки шнура не придут в полное соприкосновение, а петли на их концах не уменьшатся до минимально допустимого размера, определяемого упругостью шнура. К слову, конечная конфигурация атома будет иметь минимум потенциальной энергии, или, другими словами, зона возбуждённого атомом эфира окажется наименьшей.
Так в общих чертах выглядит процесс возникновения атома и приобретения им своей законченной формы. Этот процесс можно моделировать с помощью того же дымового кольца: все закономерности скручивания атома в равной степени присущи и дымовому кольцу. Разница, пожалуй, состоит только в том, что атом формируется стремительно, по нашим меркам — почти мгновенно, а дымовое кольцо будет скручиваться в течение секунд и даже дольше.
У скрученного атома можно выделить три характерных элемента: петлю, спаренные шнуры и переходную зону. Из них только петля и спаренные шнуры активно участвуют в формировании атома и в соединении атомов между собой; переходные же зоны в этом отношении почти нейтральны. Важно отметить, что все радиусы изгибов шнуров практически одинаковы, и определяются они упругостью шнура; поэтому и формы и размеры петель у всех атомов одни и те же. Обратим внимание ещё на то, что шнуры — всегда парны: их общее количество измеряется чётным числом; так парами они и соединяются в пучки, приобретая при полном сближении устойчивое состояние. Количество петель в атоме в большинстве случаев тоже определяется чётным числом, но бывают и исключения; и характер их соединения несколько иной.
Если, рассматривая петлю, обратить внимание на направление вращения её шнура, то можно отметить, что обе её стороны выглядят по-разному: одна сторона образует как бы всасывающую воронку, а другая — выталкивающую; и ведут себя эти стороны соответствующим образом: всасывающая воронка стремится присосать к себе, а выталкивавшая — оттолкнуть. Самое прочное соединение образуется в том случае, если две петли соединились присасывающими сторонами; при этом их присасывающие способности полностью нейтрализуются. Но не все петли атома имеют возможность состыковаться друг с другом — иногда конфигурация не позволяет, — и тогда их присасывающие воронки остаются открытыми для соединения с воронками других атомов; в результате образуются межатомные связи. Атомы, соединённые между собой присасывающими воронками, образуют очень прочную молекулу. Открытые петли атомов с присасыващими сторонами образуют одну из разновидностей химической валентности; это, пожалуй, — самая главная валентность и самая чёткая из них: она либо есть, либо её нету.
Другим видом валентности является жёлоб, то есть присасывающая сторона спаренных шнуров. У них направления вращения — всегда встречные, или как говорят механики — паразитные; иначе и быть не может: только при таких направлениях вращения шнуры будут стремиться к сближению. В пучок могут входить два, четыре и другое чётное число шнуров; и на каждую пару будет приходиться один присасывающий жёлоб: у двух сблизившихся шнуров он — один, у четырёх — два, и так далее.
С помощью присасывающих желобов атомы могут соединяться друг с другом. Такая способность — то же валентность, но в отличие от петлевой у жёлоба она не столь однозначна: соединение желобов разных атомов между собою может быть самым замысловатым. Решающее значение имеет длина жёлоба: чем он длиннее, тем больше у него возможностей присоединить к себе несколько более коротких желобов (при условии, если конфигурация атома позволяет это сделать), тем, разумеется, выше его валентность. Сказывается и удобство соединения: если жёлоб ничем не загорожен, то он открыт для свободного соединения; если же он расположен не столь удачно, то и возможностей для соединения у него меньше; совсем же закрытые желоба в соединении атомов не участвуют. Петли и желоба между собою не контактируют.