Чтение онлайн

на главную

Жанры

Электромеханика в космосе
Шрифт:

Физические процессы, возникающие при ориентации или программном повороте, легче всего проследить на примере двигателя переменного тока. Статор такого двигателя должен быть жестко закреплен на корпусе космического аппарата. Ротор электродвигателя, обладая большой инерциальной массой, может при этом свободно поворачиваться и вращаться в подшипниках. Из физических принципов взаимодействия тока с внешним магнитным полем вытекает, что при прохождении тока по ротору возбужденное им магнитное поле взаимодействует с внешним магнитным полем статора и создает механический момент, который вращает ротор в заданном направлении. Так как корпус электродвигателя жестко связан и закреплен на корпусе космического летательного аппарата, то по широко известному закону действия и противодействия

статор начинает вместе с корпусом корабля двигаться в противоположном направлении. В соответствии с этим двигатель-маховик используется в системе управления космического аппарата для создания механического момента вокруг оси, параллельной оси вращения ротора двигателя-маховика.

Рис. 12. Схема расположения трехстепенных управляющих моментных электрогироскопов: 1 — датчик момента на наружной рамке карданного подвеса; 2 — корпус

Если космический аппарат движется в условиях, когда на него не действуют никакие силы сопротивления, то двигатель-маховик может длительное время обеспечивать силовое управление космическим аппаратом для ориентации корпуса параллельно оси своего ротора. Располагая три таких электродвигателя-маховика так, чтобы оси их роторов были параллельны трем строительным осям космического аппарата (рис. 4), можно обеспечить любую ориентацию и стабилизацию космического аппарата в целом, а следовательно, научной аппаратуры, установленной на космическом летательном аппарате.

Мы рассмотрели случай, когда управление космическим аппаратом осуществляется в условиях глубокого вакуума и когда на корпус аппарата не действуют внешние возмущающие силы или если аппарат получил при отделении от ракеты-носителя некоторую начальную угловую скорость. В том случае, если на корпус спутника воздействует какой-нибудь внешний момент (силы аэродинамического сопротивления, световое давление, гравитационное поле или другие внешние силы), то корпус с течением определенного времени приобретает некоторую угловую скорость вокруг какой-либо оси. Эту «паразитную» скорость можно ликвидировать только внешним же моментом — с помощью газореактивной системы или моментных магнитодвигателей, о которых будет сказано дальше. Физически это означает, что «паразитное» вращение приостанавливается, если перевести полученный корпусом кинетический момент «внутрь», запуская, например, ротор двигателя-маховика в направлении, по которому действовала внешняя сила и внешний вращающий момент. Тогда в соответствии с рассмотренными нами физическими процессами корпус получит обратное вращение, т. е. займет прежнее положение, а ротор будет с определенной скоростью вращаться внутри аппарата так, чтобы произведение момента инерции на угловую скорость вращения ротора в точности равнялось произведению момента инерции самого спутника на полученную им от внешних сил «паразитную» угловую скорость. В таком состоянии, с вращающимся ротором и с неподвижным в пространстве корпусом, спутник может двигаться по своей орбите. Если, однако, вновь появится какое-то сопротивление и снова корпус получит соответствующий импульс силы, который приведет к возникновению «паразитной» угловой скорости, то снова можно разогнать ротор, который примет на себя «паразитный» кинетический момент вращения.

Следует заметить, что этот процесс постепенного нарастания угловой скорости не может продолжаться бесконечно, ибо число оборотов двигателя-маховика дойдет до предельного, определяемого его механической прочностью. В то же время электроэнергетическая система питания не дает возможности дальнейшего увеличения скорости. Этот предел угловой скорости называют обычно «насыщением» двигателя-маховика. С точки зрения законов электротехники двигатель-маховик, например постоянного тока, набирая предельную скорость, может достичь такой ее величины, при которой противоэлектродвижущая сила, возникающая в обмотках ротора, будет равна приложенному напряжению. Ток, протекающий по двигателю, будет стремиться к минимальному значению, а момент вращения — к нулю. При этом уже невозможно будет создать дополнительный момент вращения для компенсации «паразитной» силы, которая возникает на корпусе космического аппарата.

Аналогичная картина будет наблюдаться и при использовании двигателя-маховика переменного тока, который при достижении так называемой синхронной скорости теряет возможность создавать механический момент относительно корпуса и, стало быть, аккумулировать кинетический момент, образованный внешними возмущающими силами. Такая характеристика моментов реакции электрических машин называется падающей характеристикой. Она имеет место при заданном постоянном напряжении источников тока в случае машин постоянного тока и максимальной частоты — для машин переменного тока.

Применение электродвигателей-маховиков для систематического накопления «паразитных» кинетических моментов вращения является весьма экономичным, если после достижения двигателем-маховиком своих предельных оборотов единовременно сразу затормозить ротор с помощью реактивных двигателей и тем самым получить свободу для нового накопления внешнего «паразитного» кинетического момента. Этот процесс ликвидации «насыщения», т. е. уменьшение скорости вращения, обеспечивается приложением к корпусу внешнего момента от газореактивных двигателей с одновременным включением электрического двигателя на режим торможения противотоком.

В этом случае двигатель-маховик сбрасывает свой кинетический момент и, стало быть, снова становится способным для накопления случайных внешних кинетических моментов, возникающих на космическом аппарате от внешних сил.

Автоматическая система управления тремя двигателями-маховиками конструируется таким образом, чтобы уменьшить общий кинетический момент ориентированного космического аппарата, для чего создается схема силового управления по трем строительным осям — симметрично для трех электродвигателей-маховиков, связанных с блоками управления.

В системе ориентации космического аппарата в отдельных случаях целесообразно использовать электромеханический наполнительный орган не в виде трех отдельных электродвигателей-маховиков, а в виде электрического двигателя с шаровым ротором, применяемым, как было сказано раньше, в морском судостроении. В этом случае употребляется статор типа дугового асинхронного электродвигателя (рис. 13). Электромагнитные моменты, создаваемые секторными статорными обмотками, могут действовать по любой из трех осей (или одновременно по двум осям) в соответствии с сигналами, поступающими от блока автоматики в системе ориентации и стабилизации.

Рис. 13. Схема шарового электродвнгателя-маховика:

1 — сферический ротор; 2 — зазор; 3 — дуговой статор, применяемый для шаровых мельниц

В том случае, если кинетические моменты электродвигателей-маховиков недостаточны для обеспечения поворотов космического аппарата в целом, применяются быстроходные силовые гироскопы в форме трех гироскопических устройств (см. рис. 12). Для подобных устройств рекомендуются каскадно-связанные гироскопические устройства.

Силовой космический моментный магнитодвигатель. Из рассмотрения различных типов исполнительных органов ориентации, стабилизации и программного поворота следует, что газореактивные двигатели вместе с двигателями-маховиками способны ликвидировать внешние «паразитные» моменты, воздействующие на космический летательный аппарат. Для этой же цели применяется так называемый космический моментный магнитодвигатель, использующий естественное магнитное поле Земли. В этом случае внутри космического аппарата устанавливаются электрические катушки (заменяющие работу газореактивных двигателей), токи в которых создают магнитные поля, необходимые для получения нужных моментов вращения.

Поделиться:
Популярные книги

Назад в СССР: 1985 Книга 4

Гаусс Максим
4. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Назад в СССР: 1985 Книга 4

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

Те, кого ты предал

Берри Лу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Те, кого ты предал

Кодекс Охотника. Книга XXII

Винокуров Юрий
22. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXII

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона