Электроника?.. Нет ничего проще!
Шрифт:
Н. — Если подождать довольно долго, выходное напряжение должно стать равным нулю, потому что входное напряжение опять имеет постоянное значение. А вот… Uвых. всегда равно нулю!!!
Л. — Не торопись! До скачка Uвх выходное напряжение равно нулю, и много времени спустя после скачка оно вновь равно нулю, но в момент скачка входного напряжения все обстоит иначе. Предположим, что скачок происходит за время, равное нулю. Скажи, на сколько может зарядиться конденсатор за время, равное нулю?
Н. — Дай подумать. Чтобы зарядиться, конденсатор должен получить некоторое количество электрической энергии. Чтобы получить
Л. — Скажи «совсем не может», и ты будешь прав. Никогда не забывай, Незнайкин, что: «Напряжение на выводах конденсатора не может измениться на конечную величину за равное нулю время».
Н. — Хорошо, твое правило я попрошу высечь на мраморе своего камина. Но какое отношение имеет оно к нашей задаче?
Л. — Просто-напросто оно дает нам решение. Какое напряжение было бы на конденсаторе С перед скачком Uвх?
Н. — Хм… Нуль, потому что Uвх и Uвых были равны нулю.
Л. — Совершенно верно. Перед самым скачком Uвх заряжающее конденсатор напряжение было равно нулю. А каким оно стало сразу после скачка Uвх?
Н. — Твои подчеркивания «перед самым скачком» и «сразу после скачка» заставляют меня думать, что интервал между этими двумя моментами времени равен нулю. Применив твое замечательное правило, я должен сделать вывод, что заряд конденсатора имеет такую же величину, т, е. нуль.
Л. — Превосходно. Двадцать из двадцати. Однако сразу же после скачка Uвх потенциал левой обкладки конденсатора С повысился до величины А. До какого уровня тогда поднимется потенциал правой обкладки?
Н. — Разумеется, до величины А, потому что конденсатор С был разряжен. Но тогда… по резистору R должен пройти ток, а это невозможно, так как конденсатор не может пропустить ток!
Л. — Не увлекайся. Да, сразу же после скачка входного напряжения по резистору R пойдет ток, и в начале его величина будет A/R. Ведь конденсатор имеет полное право пропустить ток, если этот ток заряжает, произойдет следующее: по мере заряда конденсатора С ток в резисторе R будет снижаться.
Н. — И, если подождать достаточно долго, С зарядится до напряжения А, после чего в R не будет тока, и Uвых вновь станет равно нулю.
Л. — О, Незнайкин, как быстро ты все понимаешь сегодня! Выходное напряжение изменяется так, как я показал на рис. 66.
Рис. 66. Форма напряжения на выходе дифференцирующей схемы, на вход которой подается скачкообразно изменяющееся напряжение,
Скорость снижения напряжения определяется произведением R на С, которое называется постоянной времени схемы и выражается в секундах (при С в фарадах и R в омах). В самом деле, чем больше емкость конденсатора С при данном сопротивлении R, тем медленнее он заряжается; чем больше сопротивление резистора R (при данной емкости С), тем больше времени требуется на заряд конденсатора. Можно легко доказать, что по истечении времени, равного постоянной времени RC, выходное напряжение падает примерно до 37 % величины А. По истечении удвоенного такого отрезка времени RC выходное напряжение составляет только 13,5 % величины А, после утроенного времени RC можно сказать, что выходного напряжения уже совсем нет, так как напряжение упало до 5 % величины А. Если произведение RC невелико, выходное напряжение изменяется, как показано пунктирной линией на рис. 66; при большой величине RC кривая принимает форму, показанную на рис. 66 штрих-пунктирной линией. При очень малой величине произведения RC кривая выходного напряжения имеет вид короткого сигнала импульсного типа (рис. 67).
Рис. 67. Короткий импульс, получаемый на выходе дифференцирующей схемы с малым произведением (RC)3 при подаче на ее вход скачкообразно изменяющегося напряжения.
Н. — Хорошо, это я понял. Но напряжение, получаемое на выходе триггера Шмитта или амплитудного ограничителя, имеет совсем не такую форму, как на рис. 65. Оно состоит из чередующихся фронтов и срезов. Скажи, пожалуйста, что получится, если это напряжение (рис. 68, а) подать на вход схемы, изображенной на рис. 64.
Л. — Фронт и срез — практически одно и то же, различие между ними лишь в направлении изменений. На выходе схемы срез даст нам отрицательный импульс (рис. 68, б).
Рис. 68. Прямоугольный сигнал (а) представляет собой периодическую последовательность резких подъемов и спадов. Дифференцирующая схема с малой постоянной RC превращает этот сигнал в чередующиеся положительные и отрицательные импульсы (б).
Н. — В сущности это очень просто. Теперь я понимаю, почему ты так стремишься получить крутые фронт и срез: при медленном изменении напряжения конденсатор С успел бы зарядиться и перестал передавать изменения входного напряжения. Но и в этих условиях можно получить хороший результат, достаточно увеличить R или С (или обе величины) и тогда конденсатор С будет мало разряжаться во время изменения сигнала.