Электроника?.. Нет ничего проще!
Шрифт:
Токи, протекающие по трем расположенным слева резисторам, соответственно равны E1/R, E2/R и E3/R. Ток, протекающий по расположенному справа резистору, равен, как мы только что установили, S/R. Потенциал точки А из-за очень высокого коэффициента усиления усилителя следует, как и раньше, считать равным нулю. Из-за высокого входного сопротивления поступающий на вход усилителя ток следует также рассматривать как равный нулю. Это означает, что сумма трех поступающих в точку А
Н. — Твоя схема очень хитрая. На мой взгляд, она несколько похожа на своеобразные весы. Если бы левое плечо коромысла состояло из трех реек равной длины и к каждой из них была подвешена чашка, то можно было бы сказать, что в висящие на тройном левом коромысле чашки мы положили равные гири Е1, Е2 и Е3 и что весы уравновешены лежащей в правой чашке гирей S, вес которой равен сумме весов гирь, лежащих в левых чашках.
Л. — Превосходная аналогия. Впрочем, можно сказать, что она применима и к схеме, изображенной на рис. 151. Потенциал точки А остается неизменным, потенциалы левого вывода резистора R1 и правого вывода резистора R2 изменяются пропорционально сопротивлениям этих резисторов. Это очень напоминает движение концов рычага, у которого точкой опоры служит точка А, а плечами которого соответственно служат сопротивления резисторов R1 и R2.
Н. — Ты дал мне способ, позволяющий сложить три напряжения…
Л. — Схемой с тремя входами я воспользовался лишь для примера. На практике же входов можно сделать столько, сколько их потребуется.
Н. — Ты меня неправильно понял. Я хотел сказать, что схема хорошо производит сложение, но меня интересует, как осуществить вычитание.
Л. — Очень просто. Для этого нужно воспользоваться схемой на рис. 151, подобрав резисторы R1 и R2 с одинаковым сопротивлением; в этих условиях положительному напряжению Е будет соответствовать равное ему по абсолютному значению отрицательное напряжение S. «Прибавление» этого напряжения S к другим напряжениям со схемы на рис. 152 соответствует его вычитанию из напряжения Е.
А теперь я хотел бы услышать, что ты думаешь о схеме, изображенной на рис. 153.
Рис. 153. Схема усилителя работающего как интегратор.
Н. —
Л. — В установившемся состоянии, разумеется, не может. Но я не вижу, что могло бы помешать в течение некоторого времени послать постоянный ток в конденсатор, чтобы его зарядить.
Н. — Верно, об этом я почему-то не подумал. Но твой конденсатор не может зарядиться: левая обкладка конденсатора имеет нулевой потенциал, а правая соединена с выходом усилителя!
Л. — Незнайкин, твоя форма явно ухудшилась — ведь выход усилителя не точка с постоянным потенциалом. По мере заряда конденсатора потенциал его правой обкладки будет снижаться. Как ты видишь, в каждый момент ток, заряжающий конденсатор, пропорционален напряжению Е, Какой вывод из этого можно сделать?
Н. — Я полагаю, что если напряжение Е поддерживать неизменным, конденсатор С будет заряжаться током постоянной величины, т. е. заряд конденсатора будет нарастать исключительно равномерно.
Л. — Я предпочитаю более точные выражения. Следует сказать, что конденсатор будет заряжаться по линейному закону. А что произойдет, если напряжение Е перестанет быть неизменным?
Н. — О, получится ужасная картина. Конденсатор станет накапливать полученный ток, сложит все это вместе и создаст страшную неразбериху.
Л. — Строго говоря, он не станет складываться, а сделает значительно лучше — он будет интегрировать. Полученное устройство представляет собой почти совершенную интегрирующую схему. Как ты помнишь, в свое время мы собрали интегрирующую схему всего лишь из одного резистора и из одного конденсатора (см. рис. 70). Ту схему можно использовать только в тех случаях, когда выходное напряжение S мало или даже ничтожно по сравнению с входным напряжением Е, чтобы напряжение на выводах резистора R можно было считать равным Е. В приведенной же на рис. 153 схеме напряжение на выводах резистора R всегда строго равно Е даже в тех случаях, когда выходное напряжение значительно. Следовательно, это совершенная интегрирующая схема.
Н. — Когда начинают говорить об интеграторах и подобных им устройствах, меня охватывает довольно сильное чувство беспокойства. Я думаю, что эта схема никогда не ходит одна. Когда я слышу об интегрирующей схеме, я полагаю, что и дифференцирующая находится где-то недалеко.
Л. — И ты прав. Дифференцирующую схему можно получить, если в схеме на рис. 153 поменять местами резистор и конденсатор. Как ты видишь, с помощью операционных усилителей мы можем производить умножение на постоянную величину, сложение, вычитание, а также можем интегрировать и дифференцировать.
Н. — Да, но мне еще кое-чего не хватает. Если ты намерен с качестве исходных данных всегда использовать напряжение, то я не представляю себе, как можно одно напряжение умножить на другое. В «схеме Незнайкина» (см. рис. 148) используются не напряжения, а положения осей потенциометров.
Л. — В случае надобности мы можем использовать схему, которую ты с присущей тебе скромностью называешь «схемой Незнайкина». Для этого потребуется установить два сервомеханизма и с их помощью заставить умножаемые напряжения управлять движками потенциометров. Но имеются и другие методы и, в частности, метод, основанный на использовании эффекта Холла.