Энергетика сегодня и завтра
Шрифт:
Во-первых, велико его общее количество в атмосфере, вес которой равен пяти триллионам тонн. А во-вторых, по-видимому, существует еще один источник кислорода, помимо фотосинтеза. Американские ученые, основываясь на спектрографических наблюдениях с космического корабля "Аполлон-16", пришли к заключению, что водяные пары в верхних слоях атмосферы под действием ультрафиолетового излучения разлагаются на кислород и водород. Так что пока кислородное голодание нам не грозит.
Если содержание кислорода в атмосфере практически не меняется, то выброс в атмосферу углекислого газа приводит к медленному
Иногда повышение температуры однозначно связывают и с таянием льдов Антарктиды, и с повышением уровня воды в океане. Не все разделяют и эту точку зрения. Согласно противоположному мнению при потеплении увеличится влажность воздуха над океаном и Антарктидой, а это вызовет рост осадков в виде снега. В результате снежно-ледяная шапка Антарктиды начнет расти, а не таять.
Так или иначе, ждать манны небесной от возрастания концентрации углекислого газа не следует. Стоит задуматься о том, как ограничить его поступление в атмосферу. Предлагаются различные методы связывать углекислоту, переводить ее в твердые вещества. Пока практическая их реализация не стоит на повестке дня. Но будем помнить о грозящей опасности.
Несколько сот миллионов лет назад начался интенсивный процесс образования угля, нефти, газа, в котором большую роль играла и зеленая масса планеты - продукты фотосинтеза. Этот процесс продолжается в сейчас. Однако, по мнению многих специалистов, максимальная скорость возобновления этого органического тоцлива в мире не превышает 10-20 миллионов тонн в год.
Расходуем же мы миллиарды тонн. Нельзя ли сжать время "восполнительных" процессов, интенсифицировать сбор урожая солнечной энергии?
Углеводы, производимые в тканях растений, в основном подобны сахару, но некоторые похожи на нефть.
Млечный сок, или латекс, растений-каучуконосов как раз и насыщен "нефтеподобными" молекулами.
В семействе молочаевых на первое место по насыщенности ими претендует молочай чиновидный (масличный молочай). До 10 процентов от его сухой массы составляют подобные углеводы, а это значит, что при благоприятных климатических условиях с гектара легко собирать до 4 тонн бионефти в год!
Современный нефтезавод прорабатывает 5 миллионов тонн нефти в год. Чтобы обеспечить его бионефтью, нужно отдать под выращивание молочая 15-20 тысяч квадратных километров сельскохозяйственных угодий!
Но пригодны и другие растения. В странах, где велика урожайность сахаросодержащих культур, из них можно выработать этиловый спирт и этанол, используемые как топливо в двигателях внутреннего сгорания.
Различных растительных источников бионефти предлагается великое множество. Вот небольшой перечень из обширного потока сообщений.
Австралия: "Создан новый вид картофеля, позволяющий получить с гектара до десяти тысяч литров спирта".
Южная Америка: "В лесах Амазонки растет дерево копайбу из семейства бобовых. Сок этого дерева - углеводород, очень близкий по составу к дизельному топливу.
Один надрез дает 10 литров сока в час".
Европа: "Овощ тапинамбур-"земляная груша" - содержит близкие к крахмалу сахароподобные вещества.
Урожайность тапинамбура - 50 тонн с гектара, что может обеспечить до 4 тонн этилового спирта".
Япония: "Японская автомобильная компания "Судзуки мотор" провела испытания бензина, произведенного из мандариновюй кожуры. При сгорании выделяется сладковатый фруктовый запах. Все было бы хорошо, но высоки производственные затраты. Для получения одного литра такого бензина нужна кожура от 11 тысяч мандаринов".
Трудно удержаться, чтобы не прокомментировать последнее анекдотичное сообщение: если каждый японец съест 10 килограммов мандаринов, то Япония получит всего лишь 70 кубометров бензина!
В поле зрения ученых попали не только растения, но и бактерии. Недавно при изучении микроорганизмов, вызывающих пурпурное цветение воды в канадском озере Саскачеван, обнаружено образование "нефтеподобных" углеводородов. Главную роль играют при этом сообщества серных бактерий, живущих в озере. Цепочка превращений, осуществляемых в ходе фотосинтеза с помощью различных бактерий и приводящих к "бактериальной нефти", непроста. В ней участвуют и сероводород, и сера, и глюкоза, и даже серная кислота. В процессе преобразований возникают также различные пигменты, благодаря которым вода озера и приобретает красный цвет.
Исследователи подсчитали, что гектар этого водоема может дать в год больше бионефти, чем гектар суши, засеянный наиболее урожайными растениями. Кроме того, для получения бактериальной нефти не нужно занимать ценные сельскохозяйственные угодья.
По мнению французских биологов, в качестве заменителей нефти перспективны одноклеточные водорослн "ботриококк". Если их выращивать в больших баках, снабжая углекислым газом и минеральными солями, то гарантирован высокий урожай углеводородов.
Используя дизельные фракции нефти, фосфорную кислоту, аммиак и некоторые другие вещества, можно осуществить биосинтез высококачественных кормовых дрожжей - "фермозин". Одновременно получается очищенный нефтяной дистиллят - компонент дизельного топлива. Таков технологический процесс, разработанный советскими специалистами в содружестве с ученымим из ГДР.
Вернемся от бактерий к растениям. Наибольший опыт в промышленных масштабах по получению автомобильного топлива из растений имеет Бразилия. В 1975 году там была принята национальная программа по производству спирта из сахарного тростника. Уже тогда в стране таким способом производилось 600 тысяч кубометров спирта - этанола. Этаноловое топливо по многим характеристикам сближается с метанолом - спиртом, получаемым из природного газа или угля.