Энергия и жизнь
Шрифт:
При дальнейшем увеличении теплопотока ячейки мельчают, их становится больше, а затем они исчезают. жидкость переходит в стохастическое турбулентное движение, так как теперь уже турбулентность более эффективно обеспечивает перенос тепла.
Таким образом, имеет место но «самоорганизация» структуры, а вынужденная организация циклических потоков вещества под влиянием внешней возмущающей силы ( потока тепла в данном случае).
Аналогичную физическую природу имеют вихри, открытые Дж. Тейлором в 1923 г. Они возникают в жидкости, налитой между двумя концентрическими цилиндрами, при вращении внутреннего цилиндра с определенной частотой.
В крупных масштабах интересное явление «самоорганизации»
Рис. 2. Вихри Лангмюра, возникающие в достаточно спокойной воде при слабом ветре.
Зоны возможного скопления организмов с положительной (а) и отрицательной (б) плавучестью.
Конвективные ячейки можно наблюдать и при циркуляции воздушных масс, вызванной неравномерным нагреванием суши и атмосферы. Описаны и зарисованы почти правильные шестигранники из облаков со сторонами в несколько километров. Движущая сила — более высокая температура поверхности Земли. Организация циклов движения воздуха такая же, как в ячейках Бенара. Энергетическая выгодность шестигранников также не вызывает сомнения.
Наконец, несколько неожиданная картина «структуризации» Солнца была обнаружена при фотографировании участков солнечной поверхности через телескопы, поднятые в стратосферу. Поверхность оказалась состоящей из гранул (зерен). Как будто рассыпан слой зерна. Эти гранулы являются результатом конвекции во внешнем слое Солнца. В центре гранул солнечная плазма поднимается; по краям, отдав энергию на излучение и охладившись, она опускается. Разность температур приводит к контрасту яркости, что мы и воспринимаем как ячейки. Размеры гранул 200—1300 км, «живут» они в среднем 10 мин, затем границы старой гранулы размываются и вместо отмершей возникает новая структура. Легко можно видеть глубокую аналогию таких гранул с ячейками Бенара. Напомним, что во всех примерах динамические структуры образовывались в промежуточной системе, через которую шел поток энергии от источника к стоку (см. гл. 1).
Теперь можно сделать несколько выводов общего плана. Прежде всего ответим на вопрос, бывает ли «самоорганизация» сложных структур в таких системах? Корректнее отвечать — не бывает! Не бывает «само» организации. Бывает вынужденная организация циклических потоков вещества в виде динамических структур под влиянием внешней возмущающей силы. И такая структура (от маленькой ячейки на сковороде, облачных шестигранников до огромных солнечных гранул) существует до тех пор, пока она более эффективно выполняет функцию переноса, чем если бы этот перенос осуществлялся без нее. Итак, выводы в сжатой форме.
1. Внешний движитель — источник энергии вызывает циклические переносы вещества, организуя динамические структуры в промежуточной системе. Сам момент появления такой структуры случаен, он связан с флуктуациями в системе.
2. Эти структуры более интенсивно выполняют функцию переноса, выживают в конкурентной борьбе наиболее эффективные (их можно назвать «приспособленные» ).
3. Если при изменении потока энергии структура начинает хуже выполнять функцию переноса, то она либо заменяется на новую, либо исчезает совсем.
Самый общий вывод: в системе с протоком свободной энергии структура вторична, функция первична.
Этот вывод можно было бы даже окрасить в теологические тона (кому нужна функция: уж не от бога ли все это?), но вопрос этот сам собой снимается, так как есть материальный носитель, «возмутитель спокойствия» и организатор движения: на нашей планете это прежде всего поток солнечной энергии. Некоторую роль играет и поток тепловой энергии от центра Земли, особенно за геологическое время. Рассмотрим подробнее поток свободной энергии от Солнца.
Глава 3. Солнце — главный источник энергии для поверхности Земли
О солнце, ты живот и красота природы,
Источник вечности и образ божества!
Тобой живет земля, жив воздух, живы воды,
Душа времен и вещества!
Из большого числа возможных источников энергии, имеющихся у нашей планеты, первое место, несомненно, следует отдать солнечному потоку, который поддерживает необходимые температурные условия Земли (чтобы мы не испарились, перегревшись, или не замерзли, переохладившись).
Культ Солнца был развит у большинства народов, населяющих Землю, и недаром поток солнечной энергии составляет основу всех потоков энергии на нашей планете (рис. 3).
К внешней границе тропосферы подводится поток солнечной радиации примерно 1000 ккал/(см2·год) (или около 2 ккал/(см2·мин)). Из-за шарообразности Земли на единицу поверхности внешней границы тропосферы в среднем поступает четвертая часть — примерно 250 ккал/(см2· год). Треть этого потока отражается, и, следовательно, Земля поглощает 167 ккал/(см2· год). Из них 59 ккал/(см2· год) поглощает атмосфера, и на долю поглощения земной поверхностью приходится 108 ккал/(см2·год). Эта энергия «перерабатывается» различными способами. В виде длинноволнового инфракрасного излучения с поверхности Земли уходит 36 ккал/(см2· год).
Рис. 3. Укрупненная схема энергетического баланса Земли
(составляющие энергетического баланса, ккал/(см2 ·год)) [Будыко, 1984].
Благодаря парниковому эффекту поверхность Земли получает около 72 ккал/(см2·год) радиационной энергии, часть которой — 60 ккал/ (см2·год) — идет на испарение воды (нижний кружок на рис. 3), а часть — 12 ккал/ (см2·год) — возвращается в атмосферу через турбулентные потоки воздуха.