Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Под хорошим мы понимаем алгоритм, позволяющий решать задачу в кратчайшее время. Эксплуатация ЭВМ и содержание обслуживающего персонала обходится в изрядную сумму, поэтому хороший (эффективный) алгоритм дает немалую экономию. Существует даже быстро развивающаяся область современной математика, называемая исследованием операций, которая только тем и занимается, что ищет наиболее эффективные способы решения сложных задач.

Хотя в этой главе собраны процедурные задачи занимательного характера, они позволят вам легко и приятно познакомиться со многими глубокими математическими понятиями. Например, первая задача позволит вам составить весьма ясное представление о том, что имеют ввиду математики, когда толкуют об изоморфизме двух, казалось бы, не связанных между собой задач: игра в 15, в которой так силен

мистер Ярмар, оказывается структурно-изоморфной знаменитой игре в «крестики-нолики». В свою очередь эта весьма популярная игра изоморфна хитроумной игре в слова, изобретенной канадским математиком Лео Мозером, и еще одной игре на «дорожной сети». Все эти игры обладают стратегиями, основанными на использовании одного из наиболее древних комбинаторных курьезов — магического квадрата 3x3.

Вы познакомитесь также с законом Архимеда (в задаче о взвешивании священного гиппопотама), с нерешенной задачей о справедливом разделе (в задаче о распределении домашних обязанностей), с некоторыми классическими комбинаторными задачами (в комментариях к задаче о краже веревки с колокольни) и с важными задачами теории графов (в задаче о ленивом искателе любовных приключений).

Теория графов занимается изучением различных множеств точек (вершин), соединенных линиями (ребрами). Многие практические задачи исследования операций допускают моделирование на графах. Некоторые из таких задач допускают изящные решения, например задача о построении минимального дерева, решаемая при помощи алгоритма Крускала. С задачей о минимальном дереве тесно связана еще одна задача — так называемая задача о дереве Штейнера. Общее решение ее пока не известно. Деревья Штейнера находят многочисленные приложения, поэтому специалисты по теории графов ведут весьма интенсивный поиск эффективных алгоритмов построения таких деревьев на ЭВМ.

Задача Штейнера принадлежит к числу так называемых NP– полных задач. Эти задачи неразрешимы в том смысле, что эффективные алгоритмы их решений не известны и, возможно, не существуют. Например, даже при использовании лучшего из известных алгоритмов построения дерева Штейнера для n точек время, затрачиваемое на решение, с увеличением n возрастает экспоненциально. Даже при сравнительно небольшом числе точек (порядка нескольких сотен) на построение дерева Штейнера лучшее решение может быть найдено… через несколько миллионов лет! Вот что значит экспоненциальный рост.

Между NP– полными задачами существует удивительная взаимосвязь: если бы для решения одной из них удалось построить эффективный алгоритм, но он был бы применим и ко всем остальным задачам, а если бы удалось доказать, что для решения какой-то из задач эффективного алгоритма не существует, то это означало бы отсутствие эффективного алгоритма для решения и всех остальных задач. Математики подозревают, что в случае NP– полных задач мы имеем дело со второй альтернативой. Ведется широкий поиск эффективных алгоритмов, позволяющих находить не оптимальное дерево Штейнера, а дерево, достаточно близкое к оптимальному.

В этой главе чаще, чем в других, упоминаются последние результаты исследований, проводимых лучшими умами современной математики.

Игра в 15 на новый лад

Когда на окраине городка открывается ярмарка, всех от мала до велика охватывает радостное возбуждение (говоря о всех, я имею в виду «всех, кроме коров»).

В этом году в одном из павильонов ярмарки желающие могли сыграть в новую игру, которая так и называется — «игра в 15».

Мистер Ярмар. Рад приветствовать вас! Добро пожаловать к нам! Правила

игры в 15 очень просты. Мы с вами по очереди ставим по монете на эти числа от 1 до 9. Кто ходит первым, безразлично.

Мистер Ярмар. Вы отмечаете свои ходы центами, я отмечаю свои ходы серебряными долларами. Выигрывает тот, кто первым накроет своими монетами 3 числа, дающие в сумме 15. Выигравший забирает все монеты, выложенные на стол.

Посмотрим, как играют в 15. Первый ход — дама ставит цент на 7. Поскольку цифра 7 накрыта, ставить на нее в дальнейшем нельзя; ни доллары, ни центы. То же можно сказать и обо всех остальных цифрах: ни одну из них нельзя накрывать монетами дважды, будь то центы или доллары.

Мистер Ярмар ставит доллар на 8.

Дама делает второй ход и ставит цент на 2. Если ей удастся поставить цент на 6, она выиграет.

Мистер Ярмар, желая воспрепятствовать выигрышу партнера, ставит доллар на 6. Он выиграет, если ему удастся поставить доллар на 1.

Дама замечает угрозу и блокирует мистеру Ярмару путь к выигрышу, ставя цент на 1.

Мистер Ярмар с усмешкой ставит доллар на 4. Дама замечает, что если он следующим ходом поставит доллар на 5, то выиграет, и отрезает ему этот путь к выигрышу.

Дама ставит цент на 5.

Но мистер Ярмар ставит доллар на 3 и выигрывает, так как 8 + 4 + 3 = 15. Дама проиграла свои 4 цента.

Мэру города игра в 15 очень понравилась. Пронаблюдав за игрой в течение почти целого дня, он пришел к убеждению, что мистер Ярмар придерживается тайной беспроигрышной стратегии.

Всю ночь напролет мэр пытался разгадать, в чем состоит тайная стратегия мистера Ярмара.

Внезапно мэра озарила поразительная по простоте идея.

Мэр. Я так и знал, что должна быть какая-то система! У доверчивых простаков, надеющихся заполучить серебряные доллары мистера Ярмара, нет ни шанса на выигрыш.

Какая идея осенила мэра? Не могли бы вы самостоятельно разработать беспроигрышную стратегию для игры в 15?

Старые добрые «крестики-нолики»!

Выигрышную стратегию указать нетрудно, если догадаться, что игра в 15 мистера Ярмара математически эквивалентна игре в «крестики-нолики». Установить эквивалентность нам поможет ло-шу — магический квадрат 3x3, впервые открытый в древнем Китае.

Поделиться:
Популярные книги

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

Третий

INDIGO
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий

Столичный доктор. Том IV

Вязовский Алексей
4. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том IV

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Неудержимый. Книга XXI

Боярский Андрей
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXI

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2