Есть идея!
Шрифт:
Загадочные последовательности
Проф. Слог. Мисс Норт, Вам предстоит решить 3 задачки. Решив правильно первую задачу, вы получите в качестве приза купальный костюм, за решение второй задачи — сумочку. Наконец, правильно решив третью задачу, вы станете обладательницей норкового манто.
Проф. Слог. Итак, первая задача.
Мисс Норт с минуту молча разглядывала надпись.
Мисс Норт. Эврика! У жирных букв по крайней мере один элемент искривлен, а тонкие буквы составлены из отрезков прямых.
Проф. Слог. Вы выиграли купальный костюм, мисс Норт. Постарайтесь выиграть и сумочку. По какому признаку буквы этого алфавита разделены на жирные и тонкие?
Мисс Норт. Посмотрим. Так, это не кривые и не отверстия, не глухие и звонкие согласные. Что же за признак? Стоп! Все понятно! Жирные буквы топологически эквивалентны. Все они получены непрерывной деформацией отрезка прямой.
Проф. Слог. Великолепно, Дези! Еще немного усилий, и норковое манто ваше! Вы должны вычеркнуть шесть букв так, чтобы оставшиеся буквы образовали имя и фамилию известного английского поэта.
Мисс Норт немного подумала и нашла ключ к решению задачи. Вычеркнув «Ш-Е-С-Т-Ь Б-У-К-В», она получила надпись: Джон Мильтон.
Мисс Дези Норт так обрадовалась полученным призам, что на прощание обняла и крепко поцеловала проф. Слога.
В первой задаче буквы алфавита разделены на основе геометрических различий между прямыми и кривыми (жирно обведены буквы, содержащие криволинейные элементы). Во второй задаче буквы разделены по топологическому признаку (жирно обведены буквы алфавита, топологически эквивалентные отрезку прямой, не имеющие точек самопересечения и незамкнутые).
Представим себе, что заглавные буквы сделаны из упругого материала и их можно сжимать, растягивать и даже выводить из плоскости и переносить в другое место. Две буквы называются топологически эквивалентными, если их можно перевести друг в друга такими непрерывными деформациями (разрезать буквы или склеивать их не разрешается). Попробуйте разбить все буквы алфавита на классы топологически эквивалентных букв.
Например буквы Е и Т топологически эквивалентны, но ни одна из них не эквивалентна буквам X и К, хотя последние эквивалентны друг другу. Аналогичным образом можно классифицировать не только заглавные, но и строчные буквы, цифры и любые другие знаки. Производя классификацию печатных букв, необходимо учитывать, что в различных типографских гарнитурах буквы могут отличаться по форме.
Слова прощания
Проф. Слог. Дорогие телезрители! Прежде чем мы расстанемся, я хотел бы задать вам 3 задачки. Задача первая: какое слово из 7 букв станет длиннее, если 2 его последние буквы заменить другими?
Вторая задача: какие 3 слова из 4 букв заканчиваются на «ети»?
Третья, и последняя, задача: в каком слове сто «н»?
Проф. Слог. Наша передача подошла к концу, уважаемые любители слова. Благодарю вас за внимание. До нашей встречи на следующей неделе в то же время по той же программе! Всего вам доброго!
Ответы на последние вопросы проф. Слога:
1. «Длинный» становится «длиннее», если две последние буквы заменить на «ее».
2. На «ети» оканчиваются такие четырехбуквенные слова, как «дети», «сети» и «нети» (быть «в нетях»).
3. В слове «стон» сто «н».
А вот еще несколько задач того же типа:
1. Перед вами слово АЙВА. Какую букву следует добавить к нему, чтобы получилось название одного из штатов США?
2. Какое слово здесь «инородно»?
ДЯДЮШКА
РОДИЧ
МАТЬ
СЕСТРА
ОТЕЦ
ТЕТУШКА
3. Что означают эти буквы:
О Д Т Ч?
4. Что здесь написано:
Ответы и решения
Глава 2. Геометрические находки
Глава 3. Находки в мире чисел
42 доллара.
Решить задачу сумеет тот, кто догадается, что у некоторых животных вообще нет ног — речь идет о змеях. После этого ответ получается легко и просто: в зверинце цирка 4 четвероногих животных, 2 двуногих и 5 змей.
Вы думаете, что контейнер наполнится втрое быстрее, чем прежде, а именно за 12/3 = 4 часа? Если вы действительно так думаете, то заблуждаетесь: новая задача сводится к предыдущей.
В исходном варианте задачи число бактерий в контейнере достигает 3 к концу первого часа — в нашем новом варианте 3 бактерии оказываются в контейнере в момент, когда начинается отечет времени. Следовательно, если в исходной задаче контейнер наполнился за 12 часов, то в новом варианте задачи он наполнится на 1 ч быстрее, то есть за 11 ч.
Если часы успевают пробить 6 ударов за 5 с, то интервал между отдельными ударами составляет 1 с. Следовательно, 12 ударов часы пробьют за 11 с. Дядюшка Генри успеет проспать 40 мин.