Чтение онлайн

на главную - закладки

Жанры

Естествознание. Базовый уровень. 10 класс
Шрифт:

Магнитное поле, в отличие от электрического, не создаётся какими-либо зарядами. Магнитных зарядов не существует. Аналогом электрических зарядов в магнитном поле служат два полюса, один из которых называют северным, а второй – южным в честь компаса, побудившего к исследованиям магнетизма. Как и в случае с электрическими зарядами, одноимённые полюсы отталкиваются, а разноимённые – притягиваются. Но в отличие от электрических зарядов, магнитные полюсы не могут существовать друг без друга. В этом легко убедиться, распиливая железный магнит: как бы ни мала была отпиленная часть, у неё всегда будут северный и южный полюсы.

Магнетики.

Итак, магнитное поле возникает при движении электрических зарядов. Откуда же оно берётся в куске намагниченного железа или в так называемом постоянном магните? На этот вопрос попытался ответить ещё Ампер. Он предположил, что в каждой

молекуле вещества циркулируют электрические токи, которые, складываясь, создают общее магнитное поле. В то время никто не догадывался о существовании отрицательно заряженных электронов, поэтому гипотеза Ампера была гениальной догадкой. Теперь, когда мы знаем, что электроны обязательно входят в состав всех атомов, можно задать вопрос: почему не все вещества способны к намагничиванию? Оказывается, такой способностью обладают только некоторые вещества, называемые ферромагнетиками (от лат. ferrum – железо). К ним относится не только железо, но также никель, кобальт и их сплавы. Способность к намагничиванию зависит от строения атомов этих металлов. Вращаясь вокруг ядра атома и вокруг своей оси, электроны создают крошечные «магнитики», называемые магнитными диполями. Если тело не находится во внешнем магнитном поле, эти «магнитики» ориентированы во всех направлениях и их суммарное поле равно нулю. Если же оно попадает во внешнее поле, например соприкасается с куском магнетита, его атомы поворачиваются под влиянием магнитной силы и их элементарные магнитные поля складываются. Таким образом, тело приобретает свойства магнита. Для того чтобы «размагнитить» тело, надо нагреть его до достаточно высокой температуры, чтобы хаотическое движение атомов вернуло начальный беспорядок.

Кроме ферромагнетиков существуют парамагнетики, которые проявляют свойства магнита, только находясь во внешнем магнитном поле, а после прекращения его действия немедленно теряют эти свойства. Парамагнетиками являются алюминий, платина, оксид марганца и многие другие соединения. Наконец, существует ещё группа веществ, называемых диамагнетиками. Они также не обладают магнитными свойствами при отсутствии внешнего магнитного поля, но обладают свойством поворачивать свои атомы противоположно внешнему магнитному полю. К диамагнетикам относятся, например, вода, поваренная соль, водород и азот.

Проверьте свои знания

1. Что такое электромагнитная индукция?

2. С помощью какого опыта Эрстед впервые обнаружил электромагнитное поле?

3. Каким образом Ампер объяснил природу электромагнитного поля?

4. Чем ферромагнетики отличаются от парамагнетиков?

Задания

Проведите несколько опытов.

1. Положите на стол, находящийся вдали от электроприборов, компас и зарисуйте положение его стрелки. Положите рядом с ним другой компас, а лучше расположите несколько компасов в ряд. Пронаблюдайте, что произойдёт, и объясните полученный результат.

2. Подносите к крайнему в ряду компасу постоянный магнит то южным, то северным полюсом. Объясните полученные результаты.

3. Если у вас в школе имеется соленоид, подключите его к источнику питания и подносите по очереди различными участками к компасу. Объясните результаты наблюдений.

§ 30 Электромагнитные волны

Луч, пронзивши эфир,

На земле обернётся

Целой армией бликов…

М. Величка

Как вы узнали из предыдущего параграфа, Фарадеем было открыто явление электромагнитной индукции. Но мы знаем, что внешнюю силу, вызывающую в проводнике ток, называют электродвижущей силой (ЭДС). Следовательно, движение проводника относительно магнитного поля (или движение магнитного поля относительно проводника) приводит к возникновению ЭДС. Благодаря этой силе в проводнике возникнет ток, который, как нам тоже уже известно, будет создавать вокруг себя магнитное поле.

В учебнике физики для 9 класса описывается принцип работы колебательного контура. Суть его в общих чертах такова. Существует электрическая цепь, в которой находится конденсатор, на котором имеется разность потенциалов, и катушка, состоящая из многих витков электрического проводника. Конденсатор разряжается, по цепи течёт ток, который, проходя через катушку, создаёт в ней магнитное поле. Под действием этого поля в цепи возникает ЭДС, вызывающая движение зарядов в противоположном направлении. Когда это движение становится достаточно сильным, суммарное направление тока в сети изменяется и конденсатор снова заряжается. Затем весь процесс повторяется сначала и в контуре возникают периодические колебания электрического заряда и электрического тока.

Но мы знаем, что во многих случаях возникшие в какой-то точке колебания могут из неё распространяться в пространстве, вызывая волновые процессы. Возможно ли это в случае электромагнитных колебаний?

Существование электромагнитных волн теоретически предсказал великий британский физик Джеймс Клерк Максвелл (1831–1879). Он же разработал систему математических уравнений, описывающих их распространение. Максвелл предположил, что любые изменения электрического или магнитного поля должны вызывать изменения в напряжённости и магнитной индукции в соседних областях. Для этого не требуется наличия каких-либо электрических зарядов (электронов, ионов и т. п.). Просто изменяющееся поле создаёт другое изменяющееся поле, то, в свою очередь, новое поле, и в результате в пространстве распространяется электромагнитная волна. Эта волна является поперечной, и для неё справедливы все характеристики, которые свойственны другим волнам. Мы можем описать электромагнитную волну с помощью её скорости, амплитуды, длины и частоты колебаний, как об этом говорилось в § 23.

На основании своих расчётов Максвелл пришёл к выводу, что электромагнитные волны распространяются не мгновенно, а с некоторой, хотя и очень большой, скоростью. Ему удалось вычислить эту скорость. Она составила 3 •1010 см/с или 300 000 км/с, что оказалось величиной, очень близкой к скорости света, которая за несколько лет до того была измерена французским физиком А. Физо. Исходя из этого, Максвелл пришёл к выводу, что свет представляет собой электромагнитную волну.

Природа электромагнитных волн, однако, вызывала большие недоумения. Несмотря на математическую изящность уравнений Максвелла, представленные им физические подтверждения были неубедительны. Главная проблема заключалась в том, что все прочие известные волны распространяются в какой-либо среде: газах, жидкостях или твёрдых телах. Для электромагнитных волн Максвелл придумал искусственное объяснение с использованием гипотетической среды, которое не убедило физиков. На самом деле для распространения света не нужно ничего. В этом легко убедиться, если поместить электрическую лампочку под герметический стеклянный колокол, из которого затем начать откачивать воздух (рис. 81). Каким бы разреженным ни становился воздух под колоколом, лампочка будет гореть так же ярко, как и вначале. В то же время, если вместе с лампочкой мы поместим под колпак звонок, то очень скоро перестанем слышать его звучание. Это показывает, что свет может распространяться и в вакууме.

Рис. 81. Если мы поместим электрическую лампочку под герметический стеклянный колокол и откачаем из-под него воздух, то лампочка будет гореть так же ярко, как и вначале. Однако если вместо лампочки мы поместим под колокол звонок, то очень скоро перестанем слышать его звучание

Но если свет представляет собой колебания, то что же именно колеблется? Представить себе колебания без материального посредника физики позапрошлого века не могли. Поэтому, как мы уже говорили, они придумали для объяснения распространения электромагнитных колебаний специальную среду, которую называли эфиром. Считалось, что эфир повсюду однороден и целиком заполняет собой любое вещество, а также вакуум. За это его назвали «мировым эфиром». Никто не объяснял его природы, но все считали, что свет представляет собой колебания эфира, так же как другие волны представляют колебания вещества. От гипотезы мирового эфира физикам пришлось отказаться в начале прошлого века, о чём вы узнаете из следующей главы.

Рис. 82. Генрих Герц

Впервые экспериментально подтвердил теорию Максвелла Генрих Герц (1832–1918) в 1888 г. (рис. 82). С помощью сконструированного им прибора он доказал, что колебания тока вызывают в пространстве волны. Эти волны состоят из двух колебаний – напряжённости электрического поля и индукции магнитного поля, – направленных перпендикулярно друг другу. Кроме того, направления этих колебаний перпендикулярны направлению распространения волны. Герцу удалось определить длину волны, испускаемой его прибором, и измерить скорость её распространения. Эта скорость совпала со скоростью распространения света. Результаты экспериментов Герца полностью подтвердили правильность уравнений Максвелла, что привело к всеобщему признанию этой теории.

Поделиться:
Популярные книги

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Лапочки-дочки из прошлого. Исцели мое сердце

Лесневская Вероника
2. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Лапочки-дочки из прошлого. Исцели мое сердце