Чтение онлайн

на главную

Жанры

Шрифт:

Усложнение гомологичных структур

Сравнивая организмы, принадлежащие систематически близким видам, легко обнаружить большое сходство во взаимном расположении и строении многих органов. Такие органы, несколько преобразованные в ходе эволюции, называются гомологичными.Например, все млекопитающие обладают головным мозгом, четырьмя конечностями, сердцем, легкими и т. д. Это сходство объясняется единством происхождения сравниваемых видов. Органы, унаследованные от вида-предка, со временем изменялись, хотя, как правило, эти изменения касались лишь величины и формы, не нарушая основного плана взаимного расположения гомологичных частей.

Гомологичные структуры, в которых можно выделить повторяющиеся элементы, допускают ранжировку по числу таких элементов. Ярким примером

здесь могут служить ряды одномерных структур — линий, различающихся числом изгибов. Таковы знаменитые лопастные линии аммоноидей, вымершей группы головоногих моллюсков, которыми кишели моря и океаны в течение примерно 300 миллионов лет. В этих линиях обычно удается выявить целую иерархию изгибов (рис. 3). На изгибы первого порядка (как обертоны на волны) накладываются изгибы второго порядка, те же, в свою очередь, могут быть деформированы изгибами третьего порядка и т. д. Следовательно, каждому изгибу первого порядка соответствует серия изгибов более высоких порядков. Такая система позволяет ввести формализацию. Формулы лопастных линий основаны на том, что каждому изгибу самого высокого порядка приписывается его место в иерархии изгибов. Буквенные символы в формуле обозначают первичные изгибы, а цифровые индексы — уровень в иерархии. Чем большим числом изгибов обладает лопастная линия, тем, по мнению палеонтологов, выше ее сложность, поскольку тем больше символов приходится вводить в ее формулу.

Рис. 3.Усложнение одномерных структур на примере лопастной линии аммоноидей разных геологических периодов.

а — в— девон; г— карбон; д— пермь; е— юра; ж— мел.

Прекрасным примером усложнения двухмерной структуры могут служить легкие позвоночных (рис. 4, Б). У хвостатых амфибий они представляют собой пару гладкостенных мешков, хотя у ряда видов данной группы земноводных поверхность этих мешков может быть увеличена за счет крупноячеистой сети перекладин. У бесхвостых амфибий такие ячеи подразделяются системой вторичных перекладин на более мелкие ячейки — легочные пузыри. У многих рептилий появляются куда более мощные ячеистые перегородки, выступающие в глубь легочных мешков. От этих перегородок могут отходить перегородки второго порядка. В итоге, легкое приобретает губчатое строение, занимая весь объем бывшего мешка. Очевидно, что усложнение легких связано с увеличением их газообменной поверхности. Параллельно идет усложнение системы трубок — трахей и бронхов, проводящих воздух.

Тот же тип геометрического усложнения можно обнаружить и у самых примитивных животных — губок. Здесь традиционно выделяют три ступени прогрессивного развития — аскон, сикон и лейкон (рис. 4, А). Усложнение сопряжено с увеличением доли клеток, добывающих пищу, — хоаноцитов.

Рис. 4.Усложнение двухмерных структур (по: [Хадорн, Венер, 1989]).

А— усложнение губок: а— аксон, б— сикон, в— лейкон; Б— усложнение легких у позвоночных: а— хвостатые амфибии, б— рептилии, в— млекопитающие.

Можно выделить следующие типы геометрического усложнения. Для одномерных структур — линий, стержней, тонких трубок и балок — это иерархия изгибов и ветвлений, для двухмерных — иерархия складок, выпячиваний, карманов. В обоих случаях повышается размерность. Одномерная лопастная линия своими изгибами может плотно покрыть двухмерную поверхность стенки раковины. Система одномерных клеточных балок создает трехмерную структуру печеночной паренхимы. То же можно

сказать о системе тонких трубочек, укладываемых в спирали. Выпячивания двухмерных структур создают трехмерные структуры губчатого или слоистого строения. Для трехмерных структур усложнение часто сопряжено просто с повторением одних и тех же элементов (нефронов, семенных канальцев, мышечных волокон и т. д.). В итоге растет масса органа. Главный показатель, сопровождающий усложнение структуры, заключается в увеличении интенсивности ее функции. Если такое усложнение наблюдается в ходе исторического развития, то его принято называть «прогрессивным».

Усложнение в ходе онтогенеза

К проблеме структурной сложности можно подойти и с другой стороны. Обратим внимание на то, что любой многоклеточный организм развивается из одной, хотя и очень большой, клетки — оплодотворенного яйца. Эта клетка, если ее изучать под микроскопом, производит впечатление весьма однородного и бесструктурного объекта. И тем не менее гомогенная масса куриного желтка через 21 день насиживания превращается в цыпленка со всеми атрибутами сложного организма. Суть этого процесса, по мысли К. Бэра, сводится к следующему: «Во время развития из гомогенного и общего постепенно возникает гетерогенное и частное».

Еще натурфилософы говорили о параллелизме между индивидуальным развитием высших организмов и лестницей существ. Однако тот же Бэр показал, что на самом деле имеет место не повторение стадий, подобных ступенькам лестницы существ, а сходство начальных стадий развития у организмов одного типа (в смысле Ж. Кювье). У всех систематически близких видов можно обнаружить несколько стадий, когда зачатки гомологичных органов располагаются по отношению друг к другу весьма сходным образом, как бы по одному плану. Так, у всех зародышей позвоночных имеется внутренний скелет в виде продольного тяжа — хорды. Выше нее (дорсальнее) располагается нервная трубка, а ниже (вентральнее) — первичная кишка.

Образование первичных зародышевых структур у большинства хордовых протекает удивительно сходно. Возьмем, к примеру, нервную трубку — зачаток центральной нервной системы. У всех хордовых можно видеть, как в однородной эктодерме ранней гаструлы в области ее контакта с первичной кишкой постепенно обособляется узкая продольная полоска клеток — нервная пластинка. Затем она прогибается и, пройдя фазу желобка, замыкается в нервную трубку, отделившись от сросшейся над нею эктодермы.

Еще в 1828 г. Бэр пришел к заключению, что, во-первых, едва ли правомочно сопоставлять уровень организации животных, принадлежащих разным типам, и, во-вторых, у представителей одного типа этот уровень можно оценить по числу гистологических и морфологических дифференцировок, т. е. по числу деталей, выявляемых на глаз и под микроскопом при разном увеличении.

В основе морфологической дифференцировки лежит несколько фундаментальных процессов, протекающих на клеточном уровне: клеточное размножение, клеточное движение, межклеточное взаимодействие, клеточная дифференцировка и, наконец, клеточная гибель. Пожалуй, самым важным для нашей темы является процесс клеточной дифференцировки.

У многоклеточных организмов каждая клетка находится в одном из целого ряда весьма устойчивых дискретных состояний — клеточных типов, или дифференцировок. Клетки разных типов отличаются по огромному числу свойств: скорости размножения, спектру синтезируемых молекул, сродству к другим клеткам или внеклеточным структурам, способу клеточного движения и т. д. Одни из них стремятся агрегировать друг с другом, чтобы образовать шаровидные скопления или тонкие, в один клеточный слой, пласты. Другие, наоборот, как бы избегают контактов, третьи тяготеют к бесклеточным мембранам, а четвертые пытаются соединиться с клетками других типов.

Самым важным здесь является момент изменения клеткой своего типа. Это событие может произойти по разным причинам. Клетка может дифференцироваться совершенно самостоятельно (возможно, израсходовав какой-то ресурс или наработав какой-то продукт). Данный путь обычен для самых начальных стадий индивидуального развития, в особенности у животных, которых принято помещать на нижние ветви филогенетического древа. Однако чаще всего клетка дифференцируется под влиянием внешнего сигнала, поступившего от других клеток того же зародыша. Этот тип дифференцировки, весьма характерный для позвоночных, получил название эмбриональной индукции.

Поделиться:
Популярные книги

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Системный Нуб 4

Тактарин Ринат
4. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб 4

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Огни Эйнара. Долгожданная

Макушева Магда
1. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Эйнара. Долгожданная

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9