Эволюция Вселенной и происхождение жизни
Шрифт:
Рис. 8.5. Сириус, звезды Ориона и Альдебаран (в Тельце) представляют очень красивое зрелище в зимний вечер. Звезды расположены на разных расстояниях в пространстве. На рисунке расстояния указаны в парсеках (1 пк = 3,26 светового года).
Сегодня измерение параллаксов стало основной ступенью в лестнице космических расстояний. Звезды, находящиеся на расстоянии больше 50 пк, можно наблюдать с помощью приборов, вынесенных
Это может показаться странным, но Ньютон догадывался, насколько далеки звезды. Как же это было возможно до эры параллаксов? В 1668 году шотландский математик Джемс Грегори (16381675) предложил новый метод измерения звездных расстояний: стандартную свечу. Если бы все звезды светили так же, как наше Солнце, то, сравнивая видимые яркости звезды и Солнца, можно было бы в единицах расстояния Солнце-Земля определить расстояние до звезды. Мерилом расстояния до звезды служил бы ее блеск.
Конечно, очень трудно сравнивать ослепляющий свет Солнца со светом тусклой звезды. Поэтому Грегори предлагал в качестве промежуточного объекта использовать планету: яркость планеты, сравниваемая с яркостью звезды, зависит от отраженного света Солнца. Таким способом Ньютон смог вычислить расстояние до Сириуса с помощью Сатурна. Оказалось, что Сириус в миллион раз дальше Солнца. Это всего в два раза превосходит истинное расстояние, но в целом подтверждает идею об огромных расстояниях до звезд.
Метод стандартной свечи основан на важном законе, установленном Кеплером: поток света от звезды уменьшается обратно пропорционально квадрату расстояния до нее (врезка 8.2). Этим фотометрическим методом измерения больших космических расстояний пользуются в тех случаях, когда метод параллаксов уже не работает. Вместо Солнца в качестве стандартной свечи применяют звезды и даже галактики различных типов.
В действительности звезды не одинаковы. По светимости, то есть по излучаемой световой энергии, они могут сильно отличаться от Солнца. Некоторые звезды-гиганты излучают как миллион Солнц, а некоторые карлики — в десятки тысяч раз меньше. Близкий к нам пример — Сириус, который на самом деле является двойной звез-дой. Сириус А имеет светимость, равную 23 светимостям Солнца, а его тусклый сосед Сириус В излучает только 1/ 500часть излучения Солнца. Если сравнивать каждую звезду с Солнцем, считая, что она похожа на Солнце, то можно сильно ошибиться с расстоянием до нее. Естественно, астрономы стремятся разделить все небесные объекты на узкие классы по светимости. Отношение светимостей Солнца и Сириуса всего примерно в 20 раз объясняет, почему первые оценки Ньютона дали разумное значение расстояния.
Предположим, что звезда имеет светимость L — количество световой энергии, излучаемой во всех направлениях за одну секунду. На расстоянии R от звезды ее световая энергия будет равномерно распределена по поверхности сферы радиусом R. Так как площадь поверхности равна 4R 2, то поток света f, падающий на единицу площади, будет
f = L/4R 2
то есть обратно пропорционален квадрату расстояния R. Если измерить поток f и знать светимость L, то эта формула даст расстояние R. И обратно: зная расстояние R, можно вычислить светимость L. Эта формула в астрономии очень важна.
Мы уже видели, что расстояние Солнце-Земля служит естественной единицей для измерения расстояний до звезд при использовании метода параллаксов (и даже при использовании Солнца как стандартной свечи). Но каково значение этой единицы, выраженное в обычных мерах длины? Иначе говоря, насколько велика наша Солнечная система? В следующей главе мы увидим, как нелегко было измерить расстояние до Солнца, даже при том, что это ближайшая звезда и такая яркая.
Глава 9 Масштаб Солнечной системы
В древности радиус Земли был основной единицей измерения расстояний до Луны и Солнца. Аристарх, Гиппарх и Птолемей пытались измерить расстояние до Солнца, но потерпели неудачу, так как это расстояние оказалось слишком большим. Гелиоцентрическая система Коперника придала расстоянию Солнце-Земля особое значение, поскольку оно могло служить масштабом расстояний внутри Солнечной системы (см. табл. 5.1). Это же расстояние фигурирует и в Третьем законе Кеплера: время обращения планеты вокруг Солнца, найденное из наблюдений, определяет относительный размер планетной орбиты в единицах Солнце-Земля. Когда астрономы начали определять расстояния (параллаксы) звезд, расстояние от Земли до Солнца окончательно заменило радиус нашей планеты в качестве естественной единицы измерения.
Однако хотелось бы знать космические расстояния в обычных земных единицах длины, используемых физиками в своих экспериментах. Например, чтобы узнать полную мощность излучения звезды в ваттах (Дж/с), выраженную в единицах потока ее излучения, измеряемого на Земле в Вт/м 2, нужно знать расстояние до звезды в метрах. Для получения этого расстояния в метрах из годичного параллакса звезды нужно знать расстояние до Солнца в метрах. Но с первого взгляда неясно, как измерить расстояние до Солнца в метрах.
Даже Коперник и Кеплер плохо представляли себе расстояние до Солнца, а о размере звездной сферы они вообще ничего не знали (табл. 9.1). С XVII до XIX века проблема расстояния Солнце-Земля оставалась основной проблемой астрономии. Было изобретено и опробовано много различных методов и снаряжены дорогостоящие экспедиции в далекие уголки Земли. Результатом этого, наряду с постоянным уточнением расстояния до Солнца, стало начало международного научного сотрудничества.
Джованни Кассини (1625–1712), молодой профессор астрономии Болонского университета, что на севере Италии, использовал измерительный прибор, сооруженный им в кафедральном соборе Сан-Петронио для определения высоты Солнца над горизонтом, когда оно пересекает меридиан на юге. Фактически это была гигантская камера-обскура, создающая круглое изображение Солнца на полу собора.
Таблица 9.1. Расстояния до Солнца и сферы звезд.