Фантомы мозга
Шрифт:
Прежде чем мы познакомимся с моими пациентами и попытаемся разгадать кое-какие тайны нервной системы, я хотел бы пригласить вас на небольшую экскурсию по человеческому мозгу. Эти анатомические подробности (обещаю, я постараюсь объяснить их как можно проще) помогут вам лучше понять, почему неврологические пациенты ведут себя именно так, а не иначе.
Говорят, человеческий мозг – самая сложно организованная форма материи во Вселенной. Сегодня это почти клише, однако в нем есть определенная доля истины. Если вы отделите кусочек мозга, скажем, от извилистого наружного слоя – новой коры, или неокортекса, – и взглянете на него под микроскопом, вы увидите, что он состоит из нейронов (нервных клеток) – основных функциональных единиц нервной системы. При рождении типичный мозг, вероятно, содержит более ста миллиардов нейронов, однако с возрастом их число постепенно уменьшается.
Каждый нейрон состоит из тела (сомы) и десятков тысяч крошечных отростков, дендритов, которые получают информацию от других нейронов. Кроме того, у каждого нейрона имеется аксон – длинный отросток, который передает информацию от нервной клетки органам и другим нервным клеткам. Концевые участки аксона называются терминалями и служат для связи с другими нейронами.
Рис. 1.1
Если
6
Существует множество разных подходов к изучению мозга. Один метод, особенно популярный у психологов, – так называемый подход «черного ящика»: вы систематически изменяете вход, смотрите, как при этом меняется выход, а затем строите модель того, что происходит в промежутке. Если вам кажется, что это звучит скучно, так и есть. Тем не менее именно этому подходу мы обязаны некоторыми ошеломительными открытиями – например, открытием трихромазии как основного механизма цветового зрения. Ученые обнаружили, что все цвета, которые способен видеть человек, представляют собой простые комбинации трех основных цветов в разных пропорциях – красного, зеленого и синего. Следовательно, заключили они, в нашем глазу есть только три типа рецепторов, каждый из которых максимально реагирует на одну длину волны и в меньшей степени – на другие длины волн. Главная проблема с подходом «черного ящика» состоит в том, что рано или поздно у исследователя накапливается множество конкурирующих моделей. Как же определить, какая из них верная? Единственный способ это сделать – открыть «черный ящик», то есть провести физиологические эксперименты на людях и животных. Лично я очень сомневаюсь, что кто-то мог сообразить, как работает пищеварительная система, просто глядя на… результаты ее деятельности. Изучая только вход и выход, никто бы не догадался, что существует жевание, перистальтика, слюна, желудочные соки, ферменты поджелудочной железы и желчь. Кто бы заподозрил, что одна печень выполняет в пищеварительном процессе дюжину функций? И все же большинство психологов – так называемые функционалисты – упрямо придерживаются мнения, что понять умственные процессы можно сквозь призму вычислительного, бихевиористского подхода – не утруждая себя непосредственным изучением этой морщинистой штуки, которая находится у нас в голове.
В биологических системах понимание функции невозможно без понимания структуры. Эта точка зрения прямо противоречит функционалистскому подходу к работе мозга, но я убежден, что только она и есть правильная. Взять хотя бы ДНК. Понимание ее анатомии в корне изменило наше представление о наследственности и генетике, которая до тех пор оставалась тем самым «черным ящиком». Как только была открыта двойная спираль, стало очевидно, что структурная логика этой молекулы диктует функциональную логику наследственности.
Головной мозг начинается с продолговатого мозга – образования, которое соединяет спинной мозг с головным мозгом и содержит кластеры клеток (так называемые ядра), контролирующие жизненно важные функции, например кровяное давление, сердечный ритм и дыхание. Продолговатый мозг соединяется с варолиевым мостом, волокна которого идут в мозжечок – структуру размером с кулак в задней части мозга, помогающую нам выполнять скоординированные движения. Чуть выше располагаются два огромных полушария – похожие на орех половины мозга. Каждая половина делится на четыре доли – лобную, височную, теменную и затылочную, о которых мы подробнее поговорим в следующих главах (рис. 1.2).
Рис. 1.2
Макроскопическая анатомия человеческого мозга.
(а) Левая часть левого полушария. Обратите внимание на четыре доли: лобную, теменную, височную и затылочную. Лобная часть отделена от теменной центральной (роландовой) бороздой, а височная от теменной – латеральной (сильвиевой) бороздой.
(б) Внутренняя поверхность левого полушария. Мозолистое тело выделено черным цветом, таламус – белым. Мозолистое тело соединяет два полушария.
(в) Большие полушария, вид сверху. [7]
Каждое полушарие контролирует мышцы (например, в руке или ноге) на противоположной стороне тела. Правое полушарие заставляет вашу левую руку махать на прощание, а левое – вашу правую ногу бить по мячу. Две половины мозга связаны пучком нервных волокон под названием мозолистое тело. Если этот пучок перерезать, связь между двумя сторонами будет потеряна; результат – синдром, позволяющий получить кое-какое представление о роли, которую каждая сторона играет в познании. Внешняя часть каждого полушария представлена корой – шестью слоями клеток, образующими извилины и борозды и напоминающими кочан цветной капусты.
7
Источник: (а) – Ramachandran; (б) и (в) – Zeki, 1993.
В самой середине мозга находятся два таламуса. Считается, что таламус эволюционно более примитивен, чем кора больших полушарий, и выполняет функции «ретранслятора»: вся сенсорная информация, за исключением запаха, проходит через него по пути к внешней мантии. Между таламусом и корой расположены базальные ядра или ганглии (структуры с весьма забавными названиями – например, скорлупа и хвостатое ядро). Наконец, ниже таламуса находится гипоталамус, который, по-видимому, отвечает за регулирование метаболических функций, выработку гормонов и различные базовые импульсы, такие как агрессия, страх и сексуальность.
Хотя эти анатомические факты известны давно, мы до сих пор не имеем четкого представления о том, как именно работает мозг [8] . Многие более старые теории можно отнести к одному из двух воюющих лагерей – модульной теории или холизму. Последние триста лет маятник в основном качался между двумя этими крайностями. Один конец спектра оккупировали сторонники модульного подхода: они полагают, что различные части мозга высокоспециализированы. Так, существует отдельный модуль для языка и речи, отдельный модуль для памяти, отдельный модуль для математических способностей, отдельный модуль для распознавания лиц и, возможно, даже отдельный модуль для выявления лжи. Более того, эти модули, или области, характеризуются существенной автономией. Каждый из них выполняет свою собственную работу, последовательность вычислений или что-то еще, а затем, подобно ведерной бригаде, передает данные в следующий модуль, почти не «разговаривая» с другими участками.
8
Последние лет пятьдесят нейронаука тяготеет к редукционизму. Ученые отчаянно пытаются разложить сложные явления на простейшие составляющие в надежде, что изучение маленьких частей в итоге поможет понять целое. В некоторых случаях такой подход, и правда, дает впечатляющие результаты. К несчастью, многие люди искренне верят, будто для понимания мозга одного редукционизма вполне достаточно. Целые поколения исследователей были воспитаны на этой догме. Однако не так давно, на одной научной конференции, видный психолог из Кембриджа, Хорас Барлоу, заметил, что мы потратили пятьдесят лет на подробнейшее изучение коры головного мозга, но по-прежнему не имеем даже смутного представления о том, как она работает и что делает. К ужасу всех присутствующих, он сравнил нас с бесполыми марсианами, которые прилетели на Землю и угробили полвека на изучение клеточного строения и биохимии семенников, но так ничего и не узнали о сексе.
На другом конце спектра мы имеем холизм – теоретический подход, который в значительной степени пересекается с тем, что в наши дни принято называть «коннекционизмом». Представители данной научной школы утверждают, что мозг функционирует как единое целое и что все его части одинаково хороши. В пользу принципа целостности говорит тот факт, что многие участки мозга, особенно коры, могут выполнять самые разные задачи. Все связано со всем остальным, считают холисты, а потому поиск отдельных модулей – пустая трата времени.
Мой собственный опыт наблюдения за больными подсказывает, что эти две точки зрения отнюдь не исключают друг друга. Судя по всему, мозг – это динамическая структура, которая использует оба «режима». Величие человеческого потенциала проявляется только тогда, когда мы принимаем во внимание все возможности, не примыкая к поляризованным лагерям и не спрашивая, локализована данная конкретная функция или не локализована [9] . Как мы увидим далее, гораздо целесообразнее решать каждую проблему по мере ее возникновения, а не зацикливаться на определенной, заранее сформулированной четкой позиции.
9
Франц Галль – психолог восемнадцатого века, основатель модной псевдонауки френологии – довел доктрину модулярности до абсурда. Однажды, читая лекцию, Галль заметил, что у одного – очень сообразительного – студента необычно выпуклые глазные яблоки. «Почему у него такие выпуклые глазные яблоки? – задумался Галль. – Может, лобные доли имеют какое-то отношение к интеллекту? Может, у этого юноши они особенно большие и давят на глаза?» В итоге Галль провел целую серию экспериментов, в рамках которых измерял шишки и впадины на черепах своих испытуемых. Найдя отличия, он попытался сопоставить формы с различными психическими функциями. Скоро френологи «обнаружили» шишки для таких экзотических черт как благоговение, осторожность, величественность, жажда наживы и скрытность. В антикварном магазине в Бостоне один мой коллега недавно видел френологический бюст с шишкой для «республиканского духа»! Френология была по-прежнему популярна в конце девятнадцатого и начале двадцатого века.
Особый интерес у френологов вызывала связь размера мозга и умственных способностей. Они утверждали, что более тяжелый мозг умнее более легкого, что мозг чернокожих людей меньше, чем мозг белых, а мозг женщины меньше мозга мужчины. По их мнению, именно эта разница в размерах и «объясняла» различия в средних показателях интеллекта между этими группами. По иронии судьбы, когда Галль умер, коллеги взвесили его мозг и обнаружили, что он был на несколько граммов легче среднестатистического женского мозга. (Красноречивое описание френологии, ее постулатов и заблуждений, см. Stephen Jay Gould, The Mismeasure of Man).
На самом деле оба подхода в их крайних формах довольно абсурдны. В качестве аналогии предположим, что вы смотрите сериал «Спасатели Малибу». Где он локализован? В люминофоре на экране телевизора или в танцующих электронах внутри кинескопа? Или в электромагнитных волнах, передаваемых по воздуху? А может, на целлулоидной ленте или на видеопленке в студии, из которой транслируется шоу, или в камере, которая смотрит на актеров?
Большинство людей сразу понимают – вопрос бессмысленный. Тогда, возможно, у вас возникнет соблазн заключить, что сериал вообще не локализован (то есть модуль «Спасатели Малибу» не существует) в некоем конкретном месте, а пронизывает всю Вселенную, но это тоже абсурдно. Мы знаем, что он не локализован на Луне, или в моей кошке, или в стуле, на котором я сижу (хотя некоторые электромагнитные волны могут проникать в эти места). Очевидно, что люминофор, кинескоп, электромагнитные волны и видеопленка играют гораздо большую роль в этом действе, которое мы называем «Спасатели Малибу», чем Луна, стул или чужой кот.