Чтение онлайн

на главную

Жанры

Феномен науки. Кибернетический подход к эволюции

Фёдорович Турчин Валентин

Шрифт:

Но гидра способна и к гораздо более сложному поведению. Захватив добычу, она подтягивает ее щупальцами к ротовому отверстию и заглатывает. Такое поведение тоже можно объяснить совокупным действием простых рефлексов, связывающих эффекторы и рецепторы локально — в пределах большого участка тела. Например, следующая модель щупальца объясняет его способность обвиваться вокруг падающих предметов (рис. 1.9). Представим себе некоторое количество звеньев, соединенных между собой шарнирами (для простоты рассматриваем плоскую картину). Точки A и B, A' и B', B и C, В' и C'

и т. д. соединены между собой тяжами, которые могут сокращаться (мышцы). Все эти точки являются чувствительными, возбуждаясь от прикосновения к предмету (рецепторы). Возбуждение каждой точки приводит к сокращению двух соседних с нею тяжей (рефлекс).

1.10. Сложный рефлекс

Простая рефлекторная связь между возбудимой и мышечной клетками естественно возникает в процессе эволюции по методу проб и ошибок: если оказывается, что корреляция между возбуждением одной клетки и сокращением другой полезна для животного, то эта корреляция устанавливается и закрепляется. При механическом копировании связанных клеток в процессе роста и размножения природа получает систему параллельно действующих простых рефлексов, подобную щупальцу гидры. Но когда в ее (природы) распоряжении оказывается множество рецепторов и эффекторов, связанных попарно или локально, у нее «возникает искушение» усложнить систему связей путем введения промежуточных нейронов. Выгодность этого следует из того, что при наличии системы связей между всеми нейронами становятся возможными такие формы поведения, которые невозможны при ограничении парными или локальными связями. Последнее утверждение можно доказать простым подсчетом всевозможных способов преобразования ситуации в действие при том и другом способах связи. Пусть, например, у нас есть n попарно связанных рецепторов и эффекторов. Связь в каждой паре может быть либо положительная (возбуждение вызывает возбуждение, покой — покой), либо отрицательная (возбуждение вызывает покой, покой — возбуждение). Следовательно, всего возможно 2n вариантов связи, т. е. 2n вариантов поведения. Если же предположить, что система связей может быть произвольная, т. е. состояние возбуждения или покоя каждого эффектора может произвольным образом зависеть от состояния всех рецепторов, то подсчет всевозможных вариантов поведения приводит к числу 2(2n)n, неизмеримо большему, чем 2n. Совершенно такой же расчет приводит к заключению, что объединение любых подсистем, связывающих независимо друг от друга группы рецепторов и эффекторов в единую систему, всегда приводит к огромному возрастанию числа возможных вариантов поведения. Поэтому на протяжении всей истории жизни эволюция нервной системы проходит под знаком увеличения централизации.

Однако централизация централизации рознь. Если связать все нейроны в один бессмысленно запутанный клубок, то, несмотря на крайнюю «централизованность» такой системы, она вряд ли будет иметь шансы выжить в борьбе за существование. Централизация ставит следующую проблему: как из всех мыслимых способов соединения многих рецепторов с многими эффекторами (с помощью промежуточных нейронов, если потребуется) выбрать такой способ, который будет каждой ситуации сопоставлять правильное, т. е. полезное для выживания и размножения, действие? Ведь подавляющее большинство способов соединения не обладает этим свойством.

Мы знаем, что каждый новый шаг на пути усложнения живых структур природа делает по методу проб и ошибок. Посмотрим, что дает непосредственное применение метода проб и ошибок к нашей проблеме. Рассмотрим для примера небольшую систему из ста рецепторов и ста эффекторов. Допустим, что в нашем распоряжении сколько угодно нейронов для создания промежуточной нервной сети и что мы умеем легко определять, дает ли данный способ соединения нейронов правильную реакцию на каждую ситуацию. Будем перебирать все мыслимые способы, пока не натолкнемся на нужный. При n = 100 число функционально различных нервных сетей между n рецепторами и n эффекторами есть

2(2n)n 10(1032).

Число это невообразимо велико. Перебор такого числа вариантов недоступен не только нам, но и нашей матушке-природе. Если бы каждый атом во всей видимой нами части Вселенной занимался просмотром вариантов и перебирал бы их со скоростью миллиард штук в секунду, то и за миллиард миллиардов лет (а наша Земля существует не более десяти миллиардов лет) не была бы просмотрена

и миллиардная доля общего числа вариантов.

Между тем как-то ведь происходит формирование эффективно работающей нервной сети! Причем число рецепторов и эффекторов у высших животных исчисляется не сотнями и не тысячами, а миллионами.

Разгадка кроется в иерархическом строении нервной системы.

Здесь нам снова необходим экскурс в область общекибернетических понятий. Четвертый этап эволюции мы назовем этапом сложного рефлекса, но дать определение этому понятию сможем лишь после того, как познакомимся с некоторыми фактами об иерархически устроенных нервных сетях.

1 Мы следуем в основном докладу С. Э. Шноля «Сущность жизни. Инвариантность общего направления биологической эволюции» (Диалектика и современное естествознание: Матер. семинара. Дубна, 1967)

Глава 2. Иерархические структуры

2.1. Понятие понятия

Рассмотрим такую нервную сеть, которая на входе имеет много рецепторов, а на выходе — всего один эффектор, так что нервная сеть делит множество всех ситуаций на два подмножества: ситуации, вызывающие возбуждение эффектора, и ситуации, оставляющие его в покое. Задачу, решаемую в этом случае нервной сетью, называют задачей распознавания (имеется в виду распознавание принадлежности ситуации к тому или иному множеству). Животному в борьбе за существование приходится сплошь и рядом решать задачу распознавания, например: отличить ситуацию, опасную для жизни, от неопасной, отличить съедобные предметы от несъедобных и т. п. Это только наиболее яркие примеры, детальный анализ поведения животного приводит к выводу, что для выполнения сколь-нибудь сложного действия оно должно непрерывно решать множество «мелких» задач распознавания.

Множество ситуаций в кибернетике называют понятием1. Чтобы лучше уяснить, как кибернетическое понимание слова «понятие» связано с его обычным пониманием, допустим, что рецепторы рассматриваемой нами нервной сети — это светочувствительные нервные окончания сетчатки глаза или же вообще какие-то светочувствительные точки на экране, подающем информацию в нервную сеть. Рецепторы возбуждаются тогда, когда соответствующий участок экрана освещен (точнее, когда его освещенность больше некоторой пороговой величины), и остаются в состоянии покоя — в противном случае. Если на месте каждого возбужденного рецептора представить себе светлую точку, а на месте каждого невозбужденного — темную, то получится картина, которая отличается от изображения, падающего на экран, лишь своей дискретностью (т. е. тем, что она распадается на отдельные точки) и отсутствием полутонов. Будем считать, что точек (рецепторов) на экране достаточно много, а изображения, которые могут оказаться на экране, — их мы будем называть «картинками» — предельно контрастны, т. е. состоят лишь из белого и черного цвета. Тогда каждая ситуация соответствует определенной картинке.

Рис 2.1. Картинки, представляющие различные понятия

Согласно традиционной (аристотелевской) логике, когда мы думаем или говорим о какой-то определенной картинке (например, о той, которая находится в левом верхнем углу на рис. 2.1), то мы имеем дело с единичным понятием. Кроме единичных понятий, есть еще общие, или абстрактные, понятия. Например, мы можем думать о пятне вообще — не о каком-либо конкретном пятне (допустим, из числа изображенных в верхнем ряду на рис. 2.1), а о пятне как таковом. Точно так же мы можем обладать абстрактным понятием прямой линии, контура, четырехугольника, квадрата и т. д.2

Однако что значит «обладать абстрактным понятием»? Как можно проверить, обладает ли кто-то данным абстрактным понятием, например понятием «пятно»? Очевидно, только одним способом: предложить испытуемому серию картинок и попросить, чтобы он о каждой из них сказал, пятно это или нет. Если окажется, что он называет пятном только те и все те картинки, на которых «изображено пятно» (это уже с точки зрения испытующего), то, значит, понятием пятна он обладает. Иначе говоря, мы должны проверить его способность распознавать принадлежность любой предъявленной картинки к множеству картинок, которые мы описываем словом «пятно». Итак, абстрактное понятие в обычном смысле слова — во всяком случае когда речь идет о чувственно воспринимаемых образах — совпадает с введенным нами кибернетическим понятием понятия как множества ситуаций. Поэтому задачу распознавания называют также, желая сделать термин более конкретным, задачей распознавания образов (имеется в виду «обобщенных» образов) или задачей распознавания понятий (имеется в виду распознавание частных случаев понятий).

Поделиться:
Популярные книги

На границе тучи ходят хмуро...

Кулаков Алексей Иванович
1. Александр Агренев
Фантастика:
альтернативная история
9.28
рейтинг книги
На границе тучи ходят хмуро...

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3