Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

mz=gh/2m=0,928·10– 23 а/м2. (36.28)

В атоме железа вклад в ферромагнетизм фактически дают толь­ко два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)

Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы вы­яснили, что равновесие между силами магнитного поля, стара­ющимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что сред­ний магнитный момент единицы объема в направлении В оказывается

равным

где под Вамы подразумеваем поле, действующее на атом, а под kT — тепловую (больцмановскую) энергию. В теории парамаг­нетизма мы в качестве Ваиспользовали само поле В, пренебре­гая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля Ва, действующе­го на индивидуальный атом, брать среднее поле в железе. Вмес­то этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сло­жить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но по­добно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).

Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула

похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:

Эти два набора уравнений можно считать аналогичными, если мы чисто математически сопоставим

Это то же самое, что и

Другими словами, если уравнения ферромагнетизма записать как

то они будут похожи на уравнения электростатики.

В прошлом это чисто алгебраическое соответствие доста­вило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убеди­лись, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравне­ния и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одина­ковые уравнения имеют одинаковые решения.

Теперь можно воспользоваться нашими предыдущими ре­зультатами о полях внутри полости различной формы в диэлект­риках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:

Но поскольку в нашей полости М равна нулю, то мы полу­чаем

С другой стороны, для дискообразной полости, перпендику­лярной М,

что в нашем случае превращается в

или в величинах В:

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.

Конечно, их можно получить и более физически, непосред­ственно используя уравнения Максвелла. Например, уравне­ние (36.34) непосредственно следует из уравнения С·B=0. (Возьмите гауссову поверхность, которая наполовину находит­ся в материале, а наполовину — вне его.) Подобным же обра­зом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полос­ти уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.

При нахождении равновесной намагниченности из уравне­ния (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем

В приближении сферической полости коэффициент Я следует взять равным 1/3, но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возь­мем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы под­ставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.

Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

где Мнас — намагниченность насыщения, т. е. Nm, a x — вели­чина mBa/kT. Зависимость М/Мнасот х показана на фиг. 36.13 (кривая а).

Фиг. 36.13. Графическое реше­ние уравнений (36.37) и (36.38),

Воспользовавшись еще уравнением (36.36) для Ва, можно записать х как функцию от М:

Эта формула определяет линейную зависимость между М/Мнас и х при любой величине Н. Прямая пересекается с осью х в точке x=mH/kT, и наклон ее равен e0с2kT/mlКМнас. Для любого частного зна­чения Н это будет пря­мая, подобная прямой b на фиг. 36.13. Пересечение кривых а и о дает нам решение для М/Мнас. Итак, задача решена.

Поделиться:
Популярные книги

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Играть, чтобы жить. Книга 1. Срыв

Рус Дмитрий
1. Играть, чтобы жить
Фантастика:
фэнтези
киберпанк
рпг
попаданцы
9.31
рейтинг книги
Играть, чтобы жить. Книга 1. Срыв