Физика в бою
Шрифт:
В чем состоят достоинства и недостатки колесного движителя? Если мы приподнимем краном автомобиль, то увидим, что на грунте остались отпечатки от его колес. Количество отпечатков, естественно, равно количеству колес, а площадь и форма каждого из отпечатков равны соответствующим показателям поверхности контакта колесного движителя с грунтом. Если сложить площадь всех отпечатков, то получится суммарная площадь контакта движителя автомобиля с грунтом. Чтобы сравнивать между собой автомобили различной величины, суммарную площадь контакта относят ко всей площади проекции автомобиля на горизонтальную плоскость и обозначают это отношение коэффициентом использования площади Кп. Само собой разумеется, что для движения по грунтам с низкой несущей способностью более пригоден тот автомобиль, у которого Кп больше.
Для зарубежных
Колесо — один из самых старых типов движителя. Тем не менее работы по его совершенствованию не прекращаются и по сей день. Конечная цель многих из вносимых усовершенствований — увеличить площадь поверхности контакта движителя с грунтом. Самый простой путь — увеличение диаметра колеса. В США изготовлены и испытаны колесные снегоходы «Сноу Багги» и «Марш Багги» с колесами диаметром свыше 3 м. Не так давно появились сообщения о том, что в Канаде проектируется четырехколесная машина «Мамонт» с колесами диаметром свыше 17 м (с пятиэтажный дом). Очевидно, такие колеса сложны и в изготовлении, и в эксплуатации, но это — один из путей обеспечить возможность перевозки на колесах сколько-нибудь значительных грузов по бездорожью. Конечно, для движения в особых условиях отдельные образцы таких машин могут найти применение, однако не следует забывать, что для поворота колес большого диаметра необходимо значительное пространство внутри машины, что приводит к сужению рамы, уменьшению внутреннего объема корпуса, а следовательно, и к ухудшению плавучести, вызывает многие другие трудности.
Другой путь повышения коэффициента Кп — увеличение числа колес. Восьмиколесные армейские машины сейчас уже никого не удивляют, а сочлененные конструкции позволили в некоторых моделях увеличить количество колес до десяти. Однако для многоосных автомобилей высокой проходимости со всеми ведущими колесами потребовались очень сложные трансмиссии. Достаточно сказать, что для автомобиля 8x8 нужны, по крайней мере, три раздаточные коробки, 5–7 межосевых и меж-колесных дифференциалов, 12–16 редукторов и несколько десятков карданных валов. Все это значительно усложняет конструкцию, требует специальных дорогостоящих и не всегда эффективных мероприятий по обеспечению надежности, увеличивает трудоемкость технического обслуживания.
Таким образом, с точки зрения проходимости колесный движитель обладает существенным органическим недостатком— малой величиной площади контакта с грунтом. Однако мы рассмотрели пока лишь одну его функцию— создание опорной поверхности. Не менее важное значение для машин высокой проходимости имеет и вторая— реализация силы тяги.
Известно, что тяговые качества машины при прочих равных условиях тем выше, чем длиннее площадь контакта движителя с грунтом. Оценить конструкцию машины с этой точки зрения можно по отношению суммарной длины всех отпечатков колес одной стороны к длине машины (коэффициент использования длины Кд). Для зарубежных армейских автомобилей характерны следующие средние значения Кд: двухосные — 0,12; трехосные — 0,23; четырехосные — 0,32; четырехосные автомобили на пневмокатках — 0,26.
Теоретически для четырехосного колесного автомобиля при расстоянии между соседними колесами в 0,1 диаметра Кд не может быть выше 0,46. Кроме того, надо иметь в виду, что даже при сниженном давлении воздуха в шинах в контакте с грунтом находится не более 16 % окружности колеса. Остальные 84 % участия в образовании опорной и тяговой поверхности в каждый данный момент времени не принимают и, с инженерной точки зрения, являются лишь балластом. Правда, в печати приводятся сведения о попытках зарубежных специалистов обойти этот недостаток за счет применения некруглых (квадратных, трехгранных, овальных) колес. Однако из стадии эксперимента эти попытки не вышли. К тому же трудно представить себе что-либо более похожее на фрезу для разрушения грунта, чем современная армейская широкопрофильная шина с высокими грунтозацепами. Разрушение слабых грунтов идет настолько интенсивно, что движение колесных машин по ним практически нереально.
Таким образом, с точки зрения
Достоинством колесного движителя считают его долговечность. Действительно, изготовленные из силиконовых каучуков покрышки современных автомобилей выдерживают 100–200 тыс. км пробега. Однако — это по дорогам. Иная картина при движении по бездорожью. Тут гарантийный срок службы шины резко падает — до 15 тыс. км, причем движение на пониженном давлении (т. е. именно то, что нужно для бездорожья) допускается только в пределах 5—15 % от общего пробега и на пониженной скорости.
С точки зрения надежности для армейской машины резиновые шины колесных машин также нельзя назвать удовлетворительными. Не говоря уже о боевых повреждениях — прострелах, наезд на камни, гвозди, стекла нередко приводит к необходимости заменять шины. Эта операция, не очень-то приятная и в мирной обстановке на шоссе, крайне трудно выполнима в бою, в грязи, с колесом большого диаметра и веса. Не случайно большие четырехосные армейские автомобили запасного колеса не имеют, поскольку в полевых условиях без подъемного крана все равно его заменить нельзя. При повреждении одного-двух колес приходится добираться до базы на оставшихся, сбросив при этом часть груза или соответственно ухудшив проходимость. Повреждение резиновой покрышки, следовательно, связано со срывом выполнения поставленной перед армейской машиной задачи.
И последнее достоинство колесного движителя — возможность движения с большой скоростью. Однако для армейских автомобилей при движении по бездорожью в боевых условиях эта возможность реализована быть не может, так как скорость движения ограничивается возрастающими сопротивлениями (грунт, неровности и т. д.).
Все вышесказанное позволяет наметить область применения армейских машин с колесными движителями. Это дороги (как с твердым покрытием, так и грунтовые), плотные грунты, обладающие достаточной несущей способностью. Что касается целесообразности использования колесных машин для перевозок по песку, то подобные грунты, как уже говорилось выше, лучше всего преодолевать на машинах с движителем, оказывающим значительное удельное давление и имеющим необходимую длину опорной поверхности. Опыт французской фирмы Берлиё, успешно эксплуатирующей в Сахаре трехосные большегрузные автомобили с шинами большого диаметра, подтверждает это.
Теперь рассмотрим достоинства и недостатки второго типа движителя — гусеничного.
По мнению ряда зарубежных специалистов, гусеничные машины, по сути дела, колесные. Это парадоксальное заключение они объясняют тем, что единственное отличие гусеницы от колес состоит в «рельсе», которая укладывается перед машиной и подбирается позади машины по мере ее прохождения. Эту рельсу обычно и называют гусеницей. Благодаря такому устройству, колеса (или опорные катки, как их называют в гусеничных машинах) не воздействуют непосредственно на грунт, а передают нагрузки через звенья гусеницы — траки. Форма и размеры поверхности соприкосновения движителя с грунтом в этом случае резко изменяются, чем и объясняется различие в проходимости колесных и гусеничных машин.
Зарубежные армейские гусеничные машины обычного типа характеризуются средними значениями коэффициента использования площади Кп = 0,20, а снегоболотоходные — Кп = 0,59. Таким образом, при прочих равных показателях гусеничные машины будут в состоянии двигаться по более слабым грунтам, нежели колесные, у которых Кп не превышает 0,17.
Второй оценочный показатель — коэффициент использования длины Кд у обычных армейских гусеничных машин в среднем равен 0,55 и у снегоболотоходов — 0,66. Эти значения превышают теоретически возможный для колесных машин предел Кд, равный 0,46, в 1,2–1,4 раза. Поэтому тягово-сцепные качества гусеничного движителя, пропорциональные длине поверхности контакта, будут соответственно выше, чем у колесных машин.