Физика в технике
Шрифт:
В атомах и молекулах в нормальном их состоянии содержится равное число электронов (в электронных оболочках) и протонов (в атомных ядрах). Поэтому электрические силы действуют только внутри атомов и молекул. На достаточно больших расстояниях от молекул электрические силы электронов и протонов компенсируются и не производят заметного действия. Однако если молекулы подходят близко друг к другу, то они могут отталкиваться или притягиваться в зависимости от своего строения и взаимного положения. Чем плотнее вещество, тем заметнее силы взаимодействия. Наличием этих сил объясняется способность капель жидкости висеть на проводах и различных выступах,
Эти силы, притягивают жидкости к твердым телам, давая возможность воде насыщать грунты, цемент, бетон, позволяя краске прилипать к окрашиваемой поверхности, влаге почвы подниматься по стволам растений к листьям и плодам.
Точно так же прочность твердых тел, столь важная в технике, обусловлена молекулярными силами, связывающими в единое твердое тело все образующие его молекулы или атомы.
Наиболее ярко свойства твердых тел выражены в кристаллах. Кристаллы — это такие твердые частицы тела, которые в процессе образования, например при охлаждении расплавленного вещества, принимают правильные геометрические формы. Это обусловлено появлением определенного порядка в расположении частиц, образующих твердое тело. Так, в некоторых кристаллах атомы вещества (располагаются определенным образом: именно так, чтобы взаимное притяжение было бы наибольшим (рис. 27, а). Кристаллы очень прочны.
При образовании алмаза из углерода атомы углерода, входящие в кристалл, очень прочно связываются друг с другом. Действительно, алмаз является очень твердым и очень прочным телом и поэтому широко применяется в технике как материал для резания и сверления прочных и твердых тел. Графит представляет собой несколько другое соединение атомов углерода и обладает значительно меньшей прочностью (рис. 27, б).
Многие тела, в частности металлы, состоят из большого количества очень мелких кристаллов, беспорядочно соединенных друг с другом. Это так называемые микрокристаллические тела. Различные виды обработки металлов (отжиг, закалка, ковка, прокат, штамповка, волочение и т. д.) сильно влияют на размеры и взаимное расположение кристаллов, образующих металл.
Детальное исследование строения кристаллов металла и их взаимного расположения чрезвычайно важно для того, чтобы понять условия, при которых металлы и их сплавы обладают наибольшей механической прочностью, наиболее стойки в химическом отношении и могут выдерживать наибольший нагрев. Иногда сравнительно ничтожные добавки к металлу различных веществ могут заметно изменить его свойства. Это видно хотя бы!на примере нержавеющей стали.
Исследования показывают, что сами кристаллы обладают очень большой прочностью, превышающей практическую прочность соответствующих материалов в десятки раз. Это объясняется тем, что во всяком твердом теле имеются различные не видимые глазом, но очень существенные дефекты в структуре: трещины, пустоты, сильно снижающие прочность.
Чтобы наглядно представить себе это, надо взять лист бумаги и, растягивая его руками, попробовать разорвать. Для этого потребуется некоторое усилие. Если затем сделать на краю листа небольшой надрыв или прорезь, то разорвать лист после этого значительно легче, потому что разрыв произойдет путем разрастания того надрыва или разреза, какой был сделан.
Чтобы по возможности избежать влияния подобных дефектов и увеличить прочность металлов, поверхность их специально обрабатывают и по возможности уменьшают толщину. Тонкие металлические струны, сплетенные в толстый канат, намного прочнее, чем массивный стержень того же веса и из того же материала.
Это свойство металлов учитывают при строительстве крупных инженерных сооружений. Например, на канатах из тонких стальных тросов можно подвешивать огромные мосты, имеющие пролет более одного километра.
В настоящее время быстро развивается производство искусственных химических материалов; на основе соответствующих теоретических расчетов изменяют структурные формулы молекул и изготовляют очень прочные и вместе с тем очень тонкие пленки и нити. Такие пленки и нити все шире внедряются в практику.
Ученые работают над созданием тонкопленочных надуваемых воздухом лодок, планеров и даже самолетов.
Созданы тонкопленочные надувные здания, ангары, башни для радиотехнических целей и другие сооружения.
Широко применяются также пористые вещества из синтетического материала. Они обладают высокими теплоизоляционными свойствами, устраняют вибрации и в десятки раз легче дерева.
Перед инженерами, проектирующими материалы ближайшего будущего, стоит интереснейшая задача — сочетать сознательно рассчитанную и построенную конструкцию молекул с микроскопической структурой твердого вещества. Необходимо, чтобы молекулы вещества, предназначенного для той или иной цели, были построены не менее обоснованно и тщательно, чем, например, детали самолета или космической ракеты.
При строительстве различных сооружений нередко бывает необходимо перейти от малогабаритного сооружения к сооружению такого же типа, но более крупных размеров. Такие задачи встречаются повсеместно: растет высота зданий и башен, увеличиваются пролеты мостов, размеры морских, воздушных и космических кораблей и многих других технических объектов.
Допустим, что какое-либо сооружение, например башня для радиорелейной связи, создается по образцу уже существующей, но все размеры ее увеличиваются вдвое. При таких условиях объем конструкции, а следовательно, и вес ее возрастут в восемь раз. Однако поперечное сечение конструктивных элементов, несущих нагрузку от веса вышележащих частей башни, увеличится только в четыре раза. Это значит, что нагрузка на единицу поперечного сечения увеличится вдвое. Другими словами, нагрузка на единицу площади поперечного сечения увеличивается во столько раз, во сколько возрастут размеры сооружения.
Всякий материал имеет определенный предел прочности. Поэтому различные объекты, изготовленные из тех или иных материалов, имеют определенные предельные размеры. Этим объясняется тот факт, что заводские трубы, башни для антенн радиосвязи и другие конструкции нельзя построить какой угодно высоты. Например, даже используя самые прочные материалы, невозможно построить башню высотой в несколько километров. У такой башни нагрузка от собственного веса так сильно действовала бы на нижние части конструкции, что они неизбежно разрушились бы еще в процессе возведения сооружения.